【动手学深度学习】现代卷积神经网络汇总

news2025/1/20 10:46:16

文章目录

    • 1 LeNet
    • 2 AlexNet
    • 3 VGG
    • 4 NiN
    • 5 GoogLeNet
    • 6 ResNet
    • 7 DenseNet

本文为作者阅读学习李沐老师《动手学深度学习》一书的阶段性读书总结,原书地址为:Dive into Deep Learning。

1 LeNet

  1. 网络结构

    在这里插入图片描述

  2. 实现代码

    net = nn.Sequential(
        nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
        nn.AvgPool2d(kernel_size=2, stride=2),
        nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
        nn.AvgPool2d(kernel_size=2, stride=2),
        nn.Flatten(),
        nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
        nn.Linear(120, 84), nn.Sigmoid(),
        nn.Linear(84, 10))
    
  3. 网络特征

    1. 最早发布的卷积神经网络之一。
    2. 每个卷积块中的基本单元是一个卷积层、一个sigmoid激活函数和平均汇聚层。

2 AlexNet

  1. 网络结构

    在这里插入图片描述

  2. 实现代码

    net = nn.Sequential(
        # 这里使用一个11*11的更大窗口来捕捉对象。
        # 同时,步幅为4,以减少输出的高度和宽度。
        # 另外,输出通道的数目远大于LeNet
        nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
        nn.MaxPool2d(kernel_size=3, stride=2),
        # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
        nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
        nn.MaxPool2d(kernel_size=3, stride=2),
        # 使用三个连续的卷积层和较小的卷积窗口。
        # 除了最后的卷积层,输出通道的数量进一步增加。
        # 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
        nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
        nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
        nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
        nn.MaxPool2d(kernel_size=3, stride=2),
        nn.Flatten(),
        # 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合
        nn.Linear(6400, 4096), nn.ReLU(),
        nn.Dropout(p=0.5),
        nn.Linear(4096, 4096), nn.ReLU(),
        nn.Dropout(p=0.5),
        # 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
        nn.Linear(4096, 10))
    
  3. 网络特征

    1. AlexNet通过暂退法(dropout)控制全连接层的模型复杂度,而LeNet只使用了权重衰减。
    2. AlexNet在训练时增加了大量的图像增强数据,如翻转、裁切和变色。 这使得模型更健壮,更大的样本量有效地减少了过拟合。
    3. AlexNet将sigmoid激活函数改为更简单的ReLU激活函数。
    4. AlexNet比相对较小的LeNet5要深得多。AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。

3 VGG

  1. 网络结构

    在这里插入图片描述
    在这里插入图片描述

  2. 实现代码

import torch
from torch import nn
from d2l import torch as d2l


def vgg_block(num_convs, in_channels, out_channels):
    layers = []
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels, out_channels,
                                kernel_size=3, padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)

def vgg(conv_arch):
    conv_blks = []
    in_channels = 1
    # 卷积层部分
    for (num_convs, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels

    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        # 全连接层部分
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))
   
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))
net = vgg(conv_arch)
  1. 网络特征
    1. 块的使用导致网络定义的非常简洁。使用块可以有效地设计复杂的网络。
    2. 在VGG论文中,Simonyan和Ziserman尝试了各种架构。特别是他们发现深层且窄的卷积(即3×3)比较浅层且宽的卷积更有效。

4 NiN

  1. 网络结构

在这里插入图片描述

  1. 实现代码
import torch
from torch import nn
from d2l import torch as d2l


def nin_block(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())

net = nn.Sequential(
    nin_block(1, 96, kernel_size=11, strides=4, padding=0),
    nn.MaxPool2d(3, stride=2),
    nin_block(96, 256, kernel_size=5, strides=1, padding=2),
    nn.MaxPool2d(3, stride=2),
    nin_block(256, 384, kernel_size=3, strides=1, padding=1),
    nn.MaxPool2d(3, stride=2),
    nn.Dropout(0.5),
    # 标签类别数是10
    nin_block(384, 10, kernel_size=3, strides=1, padding=1),
    nn.AdaptiveAvgPool2d((1, 1)),
    # 将四维的输出转成二维的输出,其形状为(批量大小,10)
    nn.Flatten())
  1. 网络特征
    1. NiN完全取消了全连接层。因为如果和LeNet、AlexNet和VGG一样使用了全连接层,可能会完全放弃表征的空间结构。
    2. 使用1x1卷积层,作为在每个像素通道维度上独立作用的全连接层。

5 GoogLeNet

  1. 网络结构

    1. Inception块结构
      在这里插入图片描述
    2. GoogLeNet网络结构
      在这里插入图片描述
  2. 实现代码

    import torch
    from torch import nn
    from torch.nn import functional as F
    from d2l import torch as d2l
    
    
    class Inception(nn.Module):
        # c1--c4是每条路径的输出通道数
        def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
            super(Inception, self).__init__(**kwargs)
            # 线路1,单1x1卷积层
            self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
            # 线路2,1x1卷积层后接3x3卷积层
            self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
            self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
            # 线路3,1x1卷积层后接5x5卷积层
            self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
            self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
            # 线路4,3x3最大汇聚层后接1x1卷积层
            self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
            self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)
    
        def forward(self, x):
            p1 = F.relu(self.p1_1(x))
            p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
            p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
            p4 = F.relu(self.p4_2(self.p4_1(x)))
            # 在通道维度上连结输出
            return torch.cat((p1, p2, p3, p4), dim=1)
        
    b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                       nn.ReLU(),
                       nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
    b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                       nn.ReLU(),
                       nn.Conv2d(64, 192, kernel_size=3, padding=1),
                       nn.ReLU(),
                       nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
    b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                       Inception(256, 128, (128, 192), (32, 96), 64),
                       nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
    b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                       Inception(512, 160, (112, 224), (24, 64), 64),
                       Inception(512, 128, (128, 256), (24, 64), 64),
                       Inception(512, 112, (144, 288), (32, 64), 64),
                       Inception(528, 256, (160, 320), (32, 128), 128),
                       nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
    b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                       Inception(832, 384, (192, 384), (48, 128), 128),
                       nn.AdaptiveAvgPool2d((1,1)),
                       nn.Flatten())
    
    net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))
    
  3. 网络特征

    1. 网络结构中含有并行联结。并行联结各个路径的权重通过最终的通道数占比来体现。

6 ResNet

  1. 网络结构

    1. 包含以及不包含 1×1 卷积层的残差块
      在这里插入图片描述
    2. ResNet网络结构
      在这里插入图片描述
  2. 实现代码

    import torch
    from torch import nn
    from torch.nn import functional as F
    from d2l import torch as d2l
    
    
    class Residual(nn.Module):
        def __init__(self, in_channels, num_channels, use_1x1conv=False, strides=1):
            super().__init__()
            self.conv1=nn.Conv2d(in_channels, num_channels, stride=strides, padding=1, kernel_size=3)
            self.conv2=nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)
            if use_1x1conv:
                self.conv3=nn.Conv2d(in_channels, num_channels, kernel_size=1, stride=strides)
            else:
                self.conv3=None
            self.bn1=nn.BatchNorm2d(num_channels)
            self.bn2=nn.BatchNorm2d(num_channels)
            
        def forward(self, x):
            y=F.relu(self.bn1(self.conv1(x)))
            y=self.bn2(self.conv2(y))
            if self.conv3:
                x=self.conv3(x)
            y+=x
            return F.relu(y)
        
    b1=nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                    nn.BatchNorm2d(64), nn.ReLU(),
                    nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
    b2=nn.Sequential(Residual(64, 64), Residual(64, 64))
    b3=nn.Sequential(Residual(64, 128, use_1x1conv=True, strides=2), 
                    Residual(128, 128))
    b4=nn.Sequential(Residual(128, 256, use_1x1conv=True, strides=2), 
                    Residual(256, 256))
    b5=nn.Sequential(Residual(256, 512, use_1x1conv=True, strides=2), 
                    Residual(512, 512))
    net=nn.Sequential(b1, b2, b3, b4, b5,
                     nn.AdaptiveAvgPool2d((1, 1)),
                     nn.Flatten(), nn.Linear(512, 10))
    
  3. 网络特征

    1. 残差网络可以认为是加入了快速通道得到f(x)=g(x)+x。
    2. 残差块使得很深的网络更加容易训练。
    3. 应用了批量规范化层,利用小批量的均值和标准差,不断调整神经网络的中间输出,使整个神经网络各层的中间输出值更加稳定。加速网络训练,并不会提高准确率。

7 DenseNet

  1. 网络结构

    在这里插入图片描述

  2. 实现代码

    import torch
    from torch import nn
    from d2l import torch as d2l
    
    
    def conv_block(input_channels, num_channels):
        return nn.Sequential(
            nn.BatchNorm2d(input_channels), nn.ReLU(),
            nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))
        
    class DenseBlock(nn.Module):
        def __init__(self, num_convs, input_channels, num_channels):
            super(DenseBlock, self).__init__()
            layer = []
            for i in range(num_convs):
                layer.append(conv_block(
                    num_channels * i + input_channels, num_channels))
            self.net = nn.Sequential(*layer)
    
        def forward(self, X):
            for blk in self.net:
                Y = blk(X)
                # 连接通道维度上每个块的输入和输出
                X = torch.cat((X, Y), dim=1)
            return X
        
    def transition_block(input_channels, num_channels):
        # 由于每个稠密块都会带来通道数的增加,使用过多则会过于复杂化模型。 而过渡层可以用来控制模型复杂度。
        # 它通过卷积层来减小通道数,并使用步幅为2的平均汇聚层减半高和宽,从而进一步降低模型复杂度。
        return nn.Sequential(
            nn.BatchNorm2d(input_channels), nn.ReLU(),
            nn.Conv2d(input_channels, num_channels, kernel_size=1),
            nn.AvgPool2d(kernel_size=2, stride=2))
        
    b1 = nn.Sequential(
        nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
        nn.BatchNorm2d(64), nn.ReLU(),
        nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
    # num_channels为当前的通道数
    num_channels, growth_rate = 64, 32
    num_convs_in_dense_blocks = [4, 4, 4, 4]
    blks = []
    for i, num_convs in enumerate(num_convs_in_dense_blocks):
        blks.append(DenseBlock(num_convs, num_channels, growth_rate))
        # 上一个稠密块的输出通道数
        num_channels += num_convs * growth_rate
        # 在稠密块之间添加一个转换层,使通道数量减半
        if i != len(num_convs_in_dense_blocks) - 1:
            blks.append(transition_block(num_channels, num_channels // 2))
            num_channels = num_channels // 2
    net = nn.Sequential(
        b1, *blks,
        nn.BatchNorm2d(num_channels), nn.ReLU(),
        nn.AdaptiveAvgPool2d((1, 1)),
        nn.Flatten(),
        nn.Linear(num_channels, 10))
    
  3. 网络特征

    1. 在跨层连接上,不同于ResNet中将输入与输出相加,稠密连接网络(DenseNet)在通道维上连结输入与输出。
    2. DenseNet的主要构建模块是稠密块和过渡层。前者定义如何连接输入和输出,而后者则通过1x1卷积层控制通道数量,使其不会太复杂。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/522934.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

springboot+vue社区医院管理服务系统(源码+文档)

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的社区医院管理服务系统。项目源码以及部署相关请联系风歌,文末附上联系信息 。 💕💕作者&#xff1…

从C出发 32 --- 自定义数据类型(上)

字节 指的就是 byte , 而一个 byte 占用 8 位, 在 C 语言里面有没有 直接提供 表示 8 位的数据类型? char 最小的整型,就可以表示 8 位的数据类型 char 的取值范围 -128 - 127 一个字节的取值范围是 0 - 25…

RK3308B部署mobilenetv2_ssdlite

目录 1. 在PC端运行mobilenetv2_ssdlite模型1.1 安装NCNN和Opencv1.1.1 安装NCNN1.1.2 安装Opencv 1.2 运行mobilenetv2_ssdlite模型 2. 交叉编译部署到RK3308B板子上并运行模型2.1 交叉编译NCNN和Opencv2.1.1 交叉编译Opencv2.1.2 交叉编译ONNX 2.2 交叉编译mobilenetv2_ssdli…

总结850

学习目标: 月目标:5月(张宇强化前10讲,背诵15篇短文,熟词僻义300词基础词) 周目标:张宇强化前3讲并完成相应的习题并记录,英语背3篇文章并回诵 每日必复习(5分钟&#…

深度学习环境配置系列文章(五):配置Docker深度学习开发环境

深度学习环境配置系列文章目录 第一章 专业名称和配置方案介绍 第二章 Anaconda配置Python和PyTorch 第三章 配置VS Code和Jupyter的Python环境 第四章 配置Windows11和Linux双系统 第五章 配置Docker深度学习开发环境 第五章文章目录 深度学习环境配置系列文章目录前言一, Do…

AI工具分享第二期:11款国内外AI绘画提示词工具整理

工具整理自未来百科AI工具箱,更多提示词工具可自行寻找 Midjourney中文教程 Midjourney 学习导航 PromptHero 描述 通过 DALL-E、Stable Diffusion、Midjourney 等 AI 模型搜索数以百万计的艺术图像… PromptDen AI 在线社区促使爱好者联系、协作和分享想法。 …

支付系统设计三:渠道网关设计07-后置处理

文章目录 前言一、订单数据更新1. 领域模型更新服务工厂2. 聚合创建工厂2.1 数据库更新服务2.2 聚合创建工厂 二、限流渠道入队三、异步通知1. 判断是否需要通知2. 组装异步通知报文3. 获取异步通知协议类型3. 异步通知 总结 前言 本篇将继业务处理之后的后置处理逻辑进行介绍&…

瑞吉外卖 - 后台系统退出功能(4)

某马瑞吉外卖单体架构项目完整开发文档,基于 Spring Boot 2.7.11 JDK 11。预计 5 月 20 日前更新完成,有需要的胖友记得一键三连,关注主页 “瑞吉外卖” 专栏获取最新文章。 相关资料:https://pan.baidu.com/s/1rO1Vytcp67mcw-PD…

瑞吉外卖 - 项目介绍(1)

某马瑞吉外卖单体架构项目完整开发文档,基于 Spring Boot 2.7.11 JDK 11。预计 5 月 20 日前更新完成,有需要的胖友记得一键三连,关注主页 “瑞吉外卖” 专栏获取最新文章。 相关资料:https://pan.baidu.com/s/1rO1Vytcp67mcw-PD…

CSS盒子模型、表格标签(table)、表单标签(form)

盒子:页面中所有的元素(标签),都可以看做是一个 盒子,由盒子将页面中的元素包含在一个矩形区域内,通过盒子的视角更方便的进行页面布局 盒子模型组成:内容区域(content)…

Qt扫盲-QScatterSeries理论总结

QScatterSeries理论总结 一、概述二、使用三、扩展四、扩展使用1.创建描述散点图对象2. 对散点图像添加值3. 自定义散点4. 将绘图设备与散点图对象联系5. 设置坐标轴6. 将绘图设备与GUI控件绑定并显示 一、概述 QScatterSeries 类以散点图的形式呈现数据。散点数据在图表上显示…

基于jdk1.8的Java服务监控和性能调优

JVM的参数类型 X参数 非标准参数-Xint: 解释执行-Xcomp: 第一次使用就编译成本地代码-Xmixed: JVM自己来决定是否编译成本地代码 默认使用的是mixed mode 用的不多, 只需要做了解, 用的比较多的是XX参数 XX参数 非标准化参数相对不稳定主要用来JVM调优和Debug Boolean: …

Vivado综合属性系列之一 ASYNC_REG

目录 一、属性简介 二、示例 2.1 工程说明 ​ ​2.2 工程代码 ​ ​2.3 生效确认 一、属性简介 ASYNC_REG属性的作用对象为寄存器,寄存器添加该属性后,即表明寄存器的数据输入口D接收的是来自异步时钟触发器的数据或是该寄存器在一个同步链中属于…

【CSS系列】第九章 · CSS定位和布局

写在前面 Hello大家好, 我是【麟-小白】,一位软件工程专业的学生,喜好计算机知识。希望大家能够一起学习进步呀!本人是一名在读大学生,专业水平有限,如发现错误或不足之处,请多多指正&#xff0…

Uni-app 离线打包 apk

Uni-app 离线打包 apk 1. Android Studio 下载 Android Studio官网 2. HBuilderX下载 HBuilderX下载 3. App离线SDK下载 Android 离线SDK - 正式版 下载后解压文件,将 HBuilder-Integrate-AS 重命名 build-template 并拷贝到一个专门打包用的文件夹下作为打包…

一行代码绘制高分SCI限制立方图

一、概述 Restricted cubic splines (RCS)是一种基于样条函数的非参数化模型,它可以可靠地拟合非线性关系,可以自适应地调整分割结点。在统计学和机器学习领域,RCS通常用来对连续型自变量进行建模,并在解释自变量与响应变量的关系…

抑梯度异常初始化参数(防止梯度消失和梯度爆炸)

这里设置3种参数初始化的对比,分别是:全初始化为0、随机初始化、抑梯度异常初始化。 首先是正反向传播、画图、加载数据所需的函数init_utils.py: # -*- coding: utf-8 -*-import numpy as np import matplotlib.pyplot as plt import sklea…

双层优化入门(3)—基于智能优化算法的求解方法(附matlab代码)

前面两篇博客介绍了双层优化的基本原理和使用KKT条件求解双层优化的方法,以及使用yalmip工具箱求解双层优化的方法: 双层优化入门(1)—基本原理与求解方法 双层优化入门(2)—基于yalmip的双层优化求解(附matlab代码) 除了数学规划方法之外,…

springboot+vue大学生体质测试管理系统(源码+文档)

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的大学生体质测试管理系统。项目源码以及部署相关请联系风歌,文末附上联系信息 。 💕💕作者&#xf…

how2heap-fastbin_dup.c

不同libc版本的fastbin_dup.c源码有点小区别&#xff1a;主要是有tcache的&#xff0c;需要先填充 以下为有tcache的源码示例&#xff1a; #include <stdio.h> #include <stdlib.h> #include <assert.h>int main() {setbuf(stdout, NULL);printf("This…