YoloV5/YoloV7改进---注意力机制:引入瓶颈注意力模块BAM,对标CBAM

news2025/1/11 14:19:42

  目录

1.BAM介绍

 2.BAM引入到yolov5

2.1 加入common.py中:

 2.2 加入yolo.py中:

2.3 yolov5s_BAM.yaml



1.BAM介绍

 论文:https://arxiv.org/pdf/1807.06514.pdf

        摘要:提出了一种简单有效的注意力模块,称为瓶颈注意力模块(BAM),可以与任何前馈卷积神经网络集成。我们的模块沿着两条独立的路径,通道和空间,推断出一张注意力图。我们将我们的模块放置在模型的每个瓶颈处,在那里会发生特征图的下采样。我们的模块用许多参数在瓶颈处构建了分层注意力,并且它可以以端到端的方式与任何前馈模型联合训练。我们通过在CIFAR-100、ImageNet-1K、VOC 2007和MS COCO基准上进行大量实验来验证我们的BAM。我们的实验表明,各种模型在分类和检测性能上都有持续的改进,证明了BAM的广泛适用性。

        作者将BAM放在了Resnet网络中每个stage之间。有趣的是,通过可视化我们可以看到多层BAMs形成了一个分层的注意力机制,这有点像人类的感知机制。BAM在每个stage之间消除了像背景语义特征这样的低层次特征,然后逐渐聚焦于高级的语义–明确的目标。 

 

 作者提出了新的Attention模型——瓶颈注意模块,通过分离的两个路径channel和spatial得到attention map,减少计算开销和参数开销。

实验 

 BAM可以在大规模数据集中的各种模型上有很好的泛化能力,同时参数和计算的开销可以忽略不计,这表明提出的模块BAM可以有效地提高网络容量。另一个值得注意的是,改进的性能来自于只在网络中放置三个模块。

 BAM提高了所有具有两个骨干网络的强大基线的准确性.BAM的准确率提高是以可忽略不计的参数开销实现的,这表明提高不是由于天真的容量增加,而是由于我们有效的特征细化。

 2.BAM引入到yolov5

2.1 加入common.py中:

###################### BAM  attention  ####     START   by  AI&CV  ###############################

import torch
from torch import nn
import torch.nn.functional as F


class ChannelGate(nn.Module):
    def __init__(self, channel, reduction=16):
        super().__init__()
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.mlp = nn.Sequential(
            nn.Linear(channel, channel // reduction),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel)
        )
        self.bn = nn.BatchNorm1d(channel)

    def forward(self, x):
        b, c, h, w = x.shape
        y = self.avgpool(x).view(b, c)
        y = self.mlp(y)
        y = self.bn(y).view(b, c, 1, 1)
        return y.expand_as(x)


class SpatialGate(nn.Module):
    def __init__(self, channel, reduction=16, kernel_size=3, dilation_val=4):
        super().__init__()
        self.conv1 = nn.Conv2d(channel, channel // reduction, kernel_size=1)
        self.conv2 = nn.Sequential(
            nn.Conv2d(channel // reduction, channel // reduction, kernel_size, padding=dilation_val,
                      dilation=dilation_val),
            nn.BatchNorm2d(channel // reduction),
            nn.ReLU(inplace=True),
            nn.Conv2d(channel // reduction, channel // reduction, kernel_size, padding=dilation_val,
                      dilation=dilation_val),
            nn.BatchNorm2d(channel // reduction),
            nn.ReLU(inplace=True)
        )
        self.conv3 = nn.Conv2d(channel // reduction, 1, kernel_size=1)
        self.bn = nn.BatchNorm2d(1)

    def forward(self, x):
        b, c, h, w = x.shape
        y = self.conv1(x)
        y = self.conv2(y)
        y = self.conv3(y)
        y = self.bn(y)
        return y.expand_as(x)


class BAM(nn.Module):
    def __init__(self, channel):
        super(BAM, self).__init__()
        self.channel_attn = ChannelGate(channel)
        self.spatial_attn = SpatialGate(channel)

    def forward(self, x):
        attn = F.sigmoid(self.channel_attn(x) + self.spatial_attn(x))
        return x + x * attn

###################### BAM  attention  ####     END   by  AI&CV  ###############################

 2.2 加入yolo.py中:

def parse_model(d, ch): # model_dict, input_channels(3)

添加以下内容 

        elif m is BAM:
            c1, c2 = ch[f], args[0]
            if c2 != no:
                c2 = make_divisible(c2 * gw, 8)
            args = [c1, *args[1:]]

2.3 yolov5s_BAM.yaml

仅供参考,加入网络位置不同在不同数据集表现不一致是正常现场

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 1  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
   [-1, 1, BAM, [1024]],  # 24

   [[17, 20, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

3.YOLOv5/YOLOv7魔术师专栏介绍

 💡💡💡YOLOv5/YOLOv7魔术师,独家首发创新(原创),持续更新,最终完结篇数≥100+,适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络

💡💡💡重点:通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

 专栏介绍:

✨✨✨原创魔改网络、复现前沿论文,组合优化创新

🚀🚀🚀小目标、遮挡物、难样本性能提升

🍉🍉🍉持续更新中,定期更新不同数据集涨点情况

本专栏提供每一步改进步骤和源码,开箱即用,在你的数据集下轻松涨点

通过注意力机制、小目标检测、Backbone&Head优化、 IOU&Loss优化、优化器改进、卷积变体改进、轻量级网络结合yolo等方面进行展开点,

专栏链接如下:

Yolov5/Yolov7魔术师_AI小怪兽的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/717040.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数据仓库】Apache Doris介绍

Apache Doris介绍 Apache Doris应用场景 Apache Doris核心特性 Apache Doris架构 Doris数据模型三种 Aggregate模型介绍 Uniq模型介绍 在某些多维分析场景下,用户更关注的是如何保证Key的唯一性Key 唯一性约束。因此,我们引入了 Unig 的数据模型。该模型本质上是聚…

微信如何创建自己的小程序?

微信如何创建自己的小程序?微信小程序成为了很多商家、企业甚至是个人在互联网中的营销工具,微信小程序基本上可以说是属于必备工具。那么微信如何创建自己的小程序呢?下面一起来给大家说说。 一、注册小程序账号 微信如何创建自己的小程序…

12.JavaWeb-Node.js

1.Node.js的概念 传统的Web服务器中,每个请求都会创建一个线程,这会导致线程数的增加,从而影响服务器的性能和扩展性,Ryan Dahl借助Chrome的V8引擎提供的能力实现了Node.js——可以在服务端运行的JavaScript(可以把Nod…

win下实现Linux的tab自动补全

声明 :如果不是确定的话 注册表这个东西不建议更改 如果更改的话建议先备份系统 以防意外 1.找到注册表编辑器 2. 展开HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Command Processor 3.找到Completion Char 双击 把橙色的数值改成9 4.重新打开cmd 就可以了 参考文章…

【Python数据处理】-Pandas笔记

Python数据处理-Pandas笔记 📝 基本概念 Pandas是一个强大的Python数据处理库,它提供了高效的数据结构和数据分析工具,使数据处理变得简单而快速。本篇笔记将介绍Pandas中最常用的数据结构——Series和DataFrame,以及数据处理的…

48. Compose自定义绘制日历-2

这次的实现方式完全改了,感觉最初的想法对切换周历模式比较难实现, 现在是把月历和周历 同时生成,动态切换。 待优化的:切换的时候 闪动没那么丝滑。 还有另一种实现方案 : 只生成当前月份 和前后月份三组数据&#x…

HTML5网页设计小案例:逸仙园茶馆招聘启事网页的设计

前言: 今天分享的逸仙园茶馆招聘启事网页的设计是本专栏的第一篇博客,也是我学习了几个小时知识点后写的实战小案例。我有个想法,想以逸仙园茶馆为灵感不断优化改进代码与想法设计一套与茶叶有关的的精美网页 逸仙园茶馆招聘启事网页的设计案…

【动态规划上分复盘】这是你熟悉的地下城游戏吗?

欢迎 前言一、动态规划五步曲二、地下城游戏题目分析思路:动态规划具体代码如下 总结 前言 本文讲解关于动态规划思路的两道题目。 一、动态规划五步曲 1.确定状态表示(确定dp数组的含义)2.确定状态转移方程(确定dp的递推公式&a…

NumPy实现逻辑回归

说明:数据集 ex2data1.txt是吴恩达机器学习的作业的数据集。 # -*-coding:utf-8-*- import matplotlib.pyplot as plt import numpy as np import pandas as pdclass Logitstic_Regression:def __init__(self, learning_rate0.01, num_iterations75000, threshold0.…

# 技术架构演进之路

技术架构演进之路 文章目录 技术架构演进之路单机架构应用数据分离架构应用服务集群架构读写分离架构冷热分离架构垂直分库架构微服务架构容器编排技术互联网架构 单机架构 简介应用和服务公用一台服务器出现原因出现在互联网早期,访问量比较小,单机足以满足需求.架构工作原理…

本地新项目推送至gitlab仓库

1. gitlab上新建一个空白项目 gitlab上点击new project按钮,新建一个项目 新建空白项目 项目名称与本地新建项目名称相同,其余根据具体需要选择 2. 初始化本地仓库并commit项目 进入本地项目根目录下,右击 git bash here打开命令窗口 初始化…

java代码审查过关的一次总结

**1.for循环中的逻辑都抽出一个方法并且把重要逻辑抽出一个方法 2.参数比较多合并成一个对象 3.避免没必要的if else 例如if判断能直接return就return,避免没必要的else 4.检查代码中是否包含适当的注释,解释代码的目的、实现细节和注意事项。 5.代码格式和命名规…

百炼智能发布垂直模型“爱迪生”,B2B行业的AIGC大潮来了

(图片来源:Pixels) AIGC终于来到B2B行业,企业服务AGI时代已拉开帷幕。 数科星球原创 作者丨苑晶 编辑丨大兔 百炼智能是一家专注B2B行业的智能营销企业。在过去,该行业经历了大数据、人工智能时代的洗礼。随着行业对数…

jupyter中如何管理内核

1、jupyter notebook如何和已有的虚拟环境关联起来: 如果在电脑中某个conda的虚拟环境中已经安装了jupyter,其他虚拟环境想要作为内核在jupyter中使用,分为两个步骤: 第一步:在没有jupyter的环境中下载ipykernel&…

E: 无法修正错误,因为您要求某些软件包保持现状,就是它们破坏了软件包间的依赖关系。

T:what Y:why W:how Y $ sudo apt-get install ros-noetic-gazebo-ros 正在读取软件包列表... 完成 正在分析软件包的依赖关系树 正在读取状态信息... 完成 有一些软件包无法被安装。如果您用的是 unstable 发行版&#xff0…

可信数据库大会,不见不散!

由中国信息通信研究院、中国通信标准化协会指导,中国通信标准化协会大数据技术标准推进委员会(CCSA TC601)、InfoQ 极客传媒联合主办的 2023 可信数据库发展大会将于今日在北京国际会议中心隆重召开。 本届大会以“自主 创新 引领”为主题…

【线段树】P6492 [COCI2010-2011#6] STEP

P6492 [COCI2010-2011#6] STEP - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意&#xff1a; 思路&#xff1a; 要维护区间最长子串&#xff0c;就需要维护左起最长子串和右起最长子串 要维护这两者&#xff0c;就得维护区间两端的种类 Code&#xff1a; #include <…

Spark数据倾斜优化-AQE Skewed Join

AQE处理SkewedJoin的原理 Spark Adaptive Query Execution &#xff0c; 简称 Spark AQE&#xff0c;总体思想是动态优化和修改 stage 的物理执行计划。利用执行结束的上游 stage 的统计信息&#xff08;主要是数据量和记录数&#xff09;&#xff0c;来优化下游 stage 的物理…

记一次自建靶场域渗透过程

为方便您的阅读&#xff0c;可点击下方蓝色字体&#xff0c;进行跳转↓↓↓ 01 环境搭建02 外网突破03 权限提升并维持&#xff08;1&#xff09;获取 meterpreter 会话&#xff08;2&#xff09;尝试开启远程桌面&#xff08;3&#xff09;Msf 派生 Cobalt Strike shell&#…

TinyStories: How Small Can Language Models Be and Still Speak Coherent English?

本文是LLM系列的文章之一&#xff0c;针对《TinyStories: How Small Can Language Models Be and Still Speak Coherent English?》的翻译。 TinyStories&#xff1a;语言模型能有多小&#xff0c;还能说连贯的英语&#xff1f; 摘要1 引言2 TinyStories数据集的描述2.1 Tiny…