科技云报道:大模型的中场战事,深入垂直行业腹地

news2024/11/15 23:25:21

科技云报道原创。

自从OpenAI于2022年11月推出ChatGPT后,一场波及全球科技界的“AI海啸”就此爆发。

在这里插入图片描述

自今年以来,国内已有超过30家企业入局大模型赛道。从百度“文心一言”、阿里“通义千问”的发布,到网易“玉言”、科大讯飞“星火”、昆仑万维“天工”等的推出,再到腾讯“混元”、京东“ChatJD”、华为“盘古”等的预告。互联网巨头、科技公司纷纷秀出“肌肉”,谁也不想在这场大模型混战中掉队。

在由OpenAI引发的这场狂奔中,大模型的发展阶段已经从“通用”迈入“垂类”。如果说通用大模型是大模型发展的初期阶段,那么垂直场景应用则可以视为“中场战事”。

在该阶段,应用与场景先行,倒逼垂直领域的大模型飞跃发展。不少医疗、金融、教育等行业内拥有用户数据积累的企业,已开始基于大模型“底座”,训练适配自身的垂类模型,比如近期由上海联通、华山医院联合开发的Uni-talk、医联“MedGPT”、云知声的“山海”等。

大模型路线分化

大模型让人类感受到的智能,是就像人类自身的学习那样,通过通用知识和逻辑能力的训练,具备了解决各种问题的能力。

大模型也有这种能力,基于文本语料采用无监督学习训练的模型可以用少量的监督样本,用于各类机器学习任务,比如图片分类、翻译、对话、写代码等,这样的能力就是所谓的通用能力。

当大模型发展到一定阶段,各领域企业意识到,其通用能力已无法承载更为专业的领域,比如医疗、金融等,每一个领域都是独立的知识体系,具备极为庞杂的知识量,显然仅靠通用大模型无法满足垂直领域的需求,这也为大模型之后发展路径的分化埋下了伏笔。

事实上,通用大模型发展至今,面临算力需求大、训练和推理成本高、数据质量不佳等挑战。一个成功的且可对外商业化输出的通用大模型,要求厂商拥有全栈大模型训练与研发能力、业务场景落地经验、AI安全治理举措、以及生态开放性等核心优势。

另外,训练基础模型的成本也是非常之高,做一个千亿级的大模型,需要单机群万卡以上的算力。从国内外来看,真正做通用模型的公司并没有那么多。相反,训练垂直领域模型所需要的代价和资源远远小于从零开始做通用模型。

因而,从商业逻辑的角度来看,大部分公司不具备做通用大模型的能力,巨头更适合做通用大模型,拥有丰富场景数据积累的公司更适合做垂域模型。

垂类大模型以深度解决行业需求为主,即企业在自己擅长的领域训练适合自己的“产业版GPT”。这类大模型生成的内容更符合特定垂类场景的需求,质量更高。

当前,已经可以看到不少垂类模型应用在金融、医疗、交易等场景中。比如,彭博社根据自身丰富的金融数据资源,基于GPT-3框架再训练,开发出了金融专属大模型BloombergGPT。

由此,大模型赛道目前出现了三类厂商:一类对标GPT的通用大模型,聚焦基础层的厂商;一类是在开源大模型基础之上训练垂类大模型,聚焦垂直行业的企业;另一类则是专注具体应用的纯应用公司。

通用VS垂类

从通用大模型到垂类大模型,是大模型技术发展到一定阶段的必然结果。

垂直大模型的发展主要体现在各个领域的模型性能持续提升,例如语音识别的错误率逐年下降,自然语言处理的语义理解能力不断提升等。通用大模型则在多任务学习、迁移学习等方面取得了显著进展,已经成为自然语言处理领域的重要研究方向。

比如,生物大模型能够提高AI制药效率。国外的研究报告显示,AI可以将新药研发的成功率提高16.7%,AI辅助药物研发每年能节约540亿美元的研发费用,并在研发主要环节节约40%至60%的时间成本。根据英伟达公开资料,使用AI技术可使药物早期发现所需时间缩短至三分之一,成本节省至两百分之一。

在产业角度来看,通用模型就是“百科全书”,能够有问必答,能够适用不同的产业土壤,而垂直模型类似于单领域的专家,虽然专业,但受众注定是少数人。

从演进路径上看,垂类模型是在通用大模型基础上训练而来,如果撇开通用大模型,垂类大模型不复存在。垂类模型强调领域的Know-How,对于特定领域来说,需要针对该领域的任务做指令学习。行业不同,场景不同,指令学习的区别也极大。比如,泛互联网行业更关注营销、推荐的效果,金融更领域更关注风控、可信、以及营销的效果。

两者的最大区别在于,垂类大模型在资源投入、成本投入等方面的要求下降了,但额外要求是行业Known-How,即对这个行业的知识要求提高了。

而从成本方面考量,通过通用大模型微调实现的垂类大模型相较通用大模型是“几何级别的下降”。根据国金证券的测算,在模型微调阶段,由于训练量级较小,仅为万级,相关的算力成本相比之下可忽略不计。

以斯坦福大学于2023年3月发布Alpaca为例,这是一个基于LLaMA-7B基座,应用5.2万指令对模型微调训练而来的对话类语言模型。该模型基于8块A100微调,微调时长3小时,算力成本不超过300元。

由于垂直应用大模型更符合垂类场景的需求、质量比通用大模型更高,也让众多企业看到了其中的机会。

医联近日发布了自主研发的基于Transformer架构的国内首款医疗大语言模型——MedGPT,其主要致力在真实医疗场景中发挥实际诊疗价值,可实现从疾病预防、诊断、治疗、康复的全流程智能化诊疗能力。

5月,微盟正式发布基于大模型的AI应用型产品WAI,该产品已正式上线包括话术生产、短信模板、商品描述、种草笔记、直播口播稿、公众号推文、短视频带货文案等25个实际应用场景。

作为聚焦物联网与医疗两大领域的人工智能企业,云知声正式发布山海大模型。该大模型针对知识密度高的领域,通过数据训练、训练数据、微调等方式,做一些专业的加强,这样模型既具备了通用应用水平,也针对特殊场景与领域进行了能力的加强。

山海大模型不仅在中文环境下的表现要好于GPT-4,甚至在医疗等个别场景下的表现效果,也已经开始优于GPT-4。目标是在今年内达到ChatGPT的通用能力水平,并在医疗、物联、教育等多个垂直领域的能力上全面超越GPT-4。

云知声创始人、CEO黄伟指出,在AI 1.0时代,虽然基于深度学习,每家都有强大的技术,但整体上并没有本质改变AI用于分类的任务,分类种类的增加仍然处在量变阶段,限制了AI创造价值的上限。

而在大模型引领的AI 2.0时代,为人工智能带来了新的能力,可以打造更多新的产品,满足客户更多的需求,例如医疗、营销、沟通等,能够创造更多的商业机会。

云知声创始人、CEO黄伟
云知声创始人、CEO黄伟

AI对于复杂逻辑理解能力大幅增强,扭转了用户对于AI“人工智障”的刻板印象,也让更多人接受人工智能,为大模型的广泛应用创造的条件。

“大模型所谓的‘思维链’能力,可以告诉用户推导的过程,从而知道中间过程里有哪些东西是错的,优化的时候就可以获得提示了,而不是像过去一样只能看见和调整参数的权重。”

云知声创始人兼CTO梁家恩表示,但就目前而言,大模型仍然是有限的东西,但对于没有见过的东西,大模型会生成“似是而非”的回答,而随着AI生成能力的不断增强,但校验会更加困难,这也让AI行业需要不断去探索新的解决方法。

相信随着越来越多企业入局,垂直大模型在各个行业和细分领域中将大量涌现。而那些能将一个垂直领域做专、做透,用高质量的数据持续优化模型,跑通商业闭环,构建起产业生态的企业,最终将把价值链做到足够长。

【关于科技云报道】

专注于原创的企业级内容行家——科技云报道。成立于2015年,是前沿企业级IT领域Top10媒体。获工信部权威认可,可信云、全球云计算大会官方指定传播媒体之一。深入原创报道云计算、大数据、人工智能、区块链等领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/593393.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Centos7匹配Locust+prometheus+grafana性能监控平台

一、安装Loust 之前已写过,这里忽略一万字。。。 Locust初次体验【解决webUI没数据】_Vikesgao的博客-CSDN博客 二、安装prometheus Prometheus 是一个开源的服务监控系统和时序数据库,其提供了通用的数据模型和快捷数据采集、存储和查询接口。它的核心…

LLM:LLaMA模型和微调的Alpaca模型

待写 LLaMA模型 论文原文:https://arxiv.org/abs/2302.13971v1 预训练数据 模型架构 模型就是用的transformer的decoder,所以在结构上它与GPT是非常类似的,只是有一些细节需要注意一下。 1、RMS Pre-Norm 2、SwiGLU激活函数 3、RoPE旋转位置编码 Alpaca模型 [Stanford …

cuda编程学习——CUDA全局内存性能优化(八)

前言 参考资料: 高升博客 《CUDA C编程权威指南》 以及 CUDA官方文档 CUDA编程:基础与实践 樊哲勇 文章所有代码可在我的GitHub获得,后续会慢慢更新 文章、讲解视频同步更新公众《AI知识物语》,B站:出门吃三碗饭 …

Python3数据分析与挖掘建模(8)检验

1. 假设检验 1.1 概述 假设检验是一种统计推断方法,用于对一个或多个总体参数提出关于其取值的假设,并根据样本数据对这些假设进行检验。假设检验的目的是根据样本数据提供统计上的证据,以便对总体参数的假设进行接受或拒绝。 在假设检验中…

JAVA基础 - 如何使用ClassLoader?

1. CLASSLOADER是什么 ClassLoader,类加载器。用于将CLASS文件动态加载到JVM中去,是所有类加载器的基类(Bootstrap ClassLoader不继承自ClassLoader),所有继承自抽象的ClassLoader的加载器,都会优先判断是否被父类加载器加载过&a…

C++数据结构:二叉树之二(二叉搜索树)

文章目录 前言一、二叉搜索树的概念二、代码详解1、构建节点2、构建二叉树类3、插入方法4、删除方法5、四种遍历方法6、测试代码 总结 前言 前文已经讲了二叉树概念,并搞出一个数组存储的没写具体实用意义的二叉树,这篇文章将讲解二叉树的另一种存储方式…

限量内测名额释放:微信云开发管理工具新功能

我们一直收到大家关于云数据库管理、快速搭建内部工具等诉求,为了给大家提供更好的开发体验,结合大家的诉求,云开发团队现推出新功能「管理工具」,现已启动内测,诚邀各位开发者参与内测体验。 什么是「管理工具」 管…

当节点内存管理遇上 Kubernetes:自动调度与控制

原理 在现代的容器化环境中,节点资源的管理是一个重要的任务。特别是对于内存资源的管理,它直接影响着容器应用的性能和可用性。在 Kubernetes 中,我们可以利用自动调度和控制的机制来实现对节点内存的有效管理。本文将介绍一种基于 Bash 脚…

EM中等效原理

EM中等效原理 一、基本简介 电磁等效定理对于简化许多问题的解是有用的。此外,它们还提供了对麦克斯韦系统电磁场行为的物理见解。它们与唯一性定理和惠更斯原理密切相关。一个应用是它们在研究来自孔径天线或来自激光腔输出的辐射中的用途。 等效源原理&#xf…

3.2 掌握RDD算子

一、准备工作 (一)准备文件 1、准备本地系统文件 2、把文件上传到HDFS (二)启动Spark Shell 1、启动HDFS服务 2、启动Spark服务 3、启动Spark Shell 二、掌握转换算子 (一)映射算子 - map() …

Sketch在线版免费使用,Windows也能用的Sketch!

Sketch 的最大缺点是它对 Windows/PC 用户不友好。它是一款 Mac 工具,无法在浏览器中运行。此外,使用 Sketch 需要安装其他插件才能获得更多响应式设计工具。然而,现在有了 Sketch 网页版工具即时设计替代即时设计! 即时设计几乎…

通达信凹口平量柱选股公式,倍量柱之后调整再上升

凹口平量柱是一组量柱形态,表现为量柱两边高、中间扁平或圆底的形态。如下图所示,左右各有一根高度持平的高量柱,中间夹杂着三五根甚至更多根低量柱。 凹口平量柱选股公式需要结合量柱以及K线,主要考虑以下三点: 1、倍…

git各阶段代码修改回退撤销操作

git push origin master 的含义是将本地当前分支的提交推送到名为 origin 的远程仓库的 master 分支上。 各阶段代码修改回退撤销的操作 case1 git checkout -- . 修改了文件内容但没还有git add 或git commit时撤销当前目录下所有文件的修改 case2 当完成了git add 之后&a…

项目管理:面对未知的挑战时,如何获取和使用信息?

一项实验展示了人们在面对未知的挑战时,对信息的获取和使用的影响。在下面的实验中,三组人被要求步行到十公里外的三个村庄。 第一组人没有任何信息,只跟着向导走。他们在走了短短的两三公里后就开始抱怨和情绪低落,同时感到疲惫…

2022年天府杯全国大学生数学建模竞赛E题地铁线路的运营与规划解题全过程文档及程序

2022年天府杯全国大学生数学建模竞赛 E题 地铁线路的运营与规划 原题再现: 地铁是一种非常绿色快捷的交通出行方式,全国各大城市也都在如火如荼地进行地铁线路建设与规划。但乘坐地铁有时候会感觉特别拥挤,这一时期我们称为高峰期。如何合理…

sqlserver中的merge into语句

merge into语句是用来合并两张表的数据的,比如我们想把一张表的数据批量更新到另外一张表,就可以用merge into语句。具体有哪些业务场景呢? 1.数据同步 2.数据转换 3.基于源表对目标表进行增,删,改的操作。 实践步骤…

JavaScript了解调用带参函数,无参函数的代码

以下为JavaScript了解调用带参函数,无参函数的程序代码和运行截图 目录 前言 一、带参函数 1.1 运行流程及思想 1.2 代码段 1.3 JavaScript语句代码 1.4 运行截图 二、无参函数 2.1 运行流程及思想 2.2 代码段 2.3 JavaScript语句代码 2.4 运行截图 前言…

让代码创造童话,共建快乐世界:六一儿童节特辑

让代码创造童话,共建快乐世界:六一儿童节特辑 六一儿童节即将来临,这是一个属于孩子们的快乐节日。为了让这个节日更加有趣,我们发起了“让代码创造童话,共建快乐世界”六一活动。在这个活动中,我们邀请您…

使用Tensorrt对YOLOv5目标检测的代码进行加速

文章目录 1. 前言2. 官网3. 安装依赖3.1. 安装OpenCV3.1.1. 安装3.1.2. 添加环境变量3.1.3. 查看版本 3.2. 安装TensorRT3.2.1. 下载3.2.2. 安装3.2.3. 添加环境变量 4. 下载项目5. 生成WTS模型6. cmake6.1. 生成Makefile6.1.1. 配置CMakeLists.txt6.1.1.1. 修改编译依赖的路径…

通过python采集1688商品评论数据封装接口、1688评论数据接口

1688商品评论数据是指在1688网站上对商品的评价和评论信息。这些信息包括买家对商品的使用、品质、包装、服务等方面的评价和意见,可以帮助其他用户更好地了解商品的优缺点和性能,从而做出更明智的购买决策。 1688网站是中国最大的B2B电子商务网站之一&…