给你一个 m x n 大小的矩阵 grid ,由若干正整数组成。
执行下述操作,直到 grid 变为空矩阵:
从每一行删除值最大的元素。如果存在多个这样的值,删除其中任何一个。
将删除元素中的最大值与答案相加。
注意 每执行一次操作,矩阵中列的数据就会减 1 。
返回执行上述操作后的答案。
示例 1:
输入:grid = [[1,2,4],[3,3,1]]
输出:8
解释:上图展示在每一步中需要移除的值。
- 在第一步操作中,从第一行删除 4 ,从第二行删除 3(注意,有两个单元格中的值为 3 ,我们可以删除任一)。在答案上加 4 。
- 在第二步操作中,从第一行删除 2 ,从第二行删除 3 。在答案上加 3 。
- 在第三步操作中,从第一行删除 1 ,从第二行删除 1 。在答案上加 1 。
最终,答案 = 4 + 3 + 1 = 8 。
把每行排序,然后对每一列的最大值求和:
class Solution {
public:
int deleteGreatestValue(vector<vector<int>>& grid) {
for (vector<int> &row : grid) {
sort(row.begin(), row.end());
}
int ret = 0;
while (!grid[0].empty()) {
int colMax = 0;
for (vector<int> &row : grid) {
if (colMax < row.back()) {
colMax = row.back();
}
row.pop_back();
}
ret += colMax;
}
return ret;
}
};