ReentrantLock从入门到踢门

news2025/1/10 21:25:05

1. ReentrantLock是什么

Lock提供了比synchronized方法和语句更广泛的锁定操作。 更灵活的结构化,并且支持多个相关联的对象Condition。它实现了Lock、Serializable序列化接口。

图1 ReentrantLock实现接口图

1.1 Lock

1.1.1 lock

// 获取锁
void lock();

1.1.2 lockInterruptibly

// 跟lock一样的功能--获取锁,但是lock中途不能被终端,lockInterruptibly允许中途被中断
void lockInterruptibly();

1.1.3 tryLock

// 尝试获取锁,成功true,失败false
boolean tryLock();

1.1.4 unlock

// 解锁,在finally中使用,不然容易死锁
void unlock();

1.1.5 newCondition

// 获取Condition对象(await、signal)
Condition newCondition();

1.2 ReentrantLock源码剖析

图2 ReentrantLock总方法

1.2.1 非公平锁

// 无参构造方法
public ReentrantLock() {
    // 创建非公平锁
    sync = new NonfairSync();
}

1.2.1.1 NonfairSync

// 非公平锁继承Sync
static final class NonfairSync extends Sync {

    // 序列化ID
    private static final long serialVersionUID = 7316153563782823691L;
    
    // 获取锁
    final void lock() {
        // 通过Unsafe接口的CAS函数设置值,将对象的设置为使用状态
        if (compareAndSetState(0, 1))
            // 使用对象为当前操作线程
            setExclusiveOwnerThread(Thread.currentThread());
        else
            // 获取不到,则加入等待队列
            acquire(1);
    }
    
    // 尝试获取锁
    protected final boolean tryAcquire(int acquires) {
        return nonfairTryAcquire(acquires);
    }
}

1.2.1.2 acquire

// 加入等待队列
public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

1.2.1.3 tryAcquire

// 尝试是否为可重入锁
protected final boolean tryAcquire(int acquires) {
    return nonfairTryAcquire(acquires);
}

// 
final boolean nonfairTryAcquire(int acquires) {
    // 获取当前线程
    final Thread current = Thread.currentThread();
    // 查看对象锁状态
    int c = getState();
    // 空闲状态
    if (c == 0) {
        // CAS设置占有状态
        if (compareAndSetState(0, acquires)) {
            // 设置当前线程持有
            setExclusiveOwnerThread(current);
            return true;
        }
    }
    // 非空闲,但占有对象的线程为当前线程,则按可重入锁解决
    else if (current == getExclusiveOwnerThread()) {
        // 统计可重入锁次数
        int nextc = c + acquires;
        // 非法次数
        if (nextc < 0) // overflow
            throw new Error("Maximum lock count exceeded");
        // 设置对象可重入锁次数
        setState(nextc);
        return true;
    }
    return false;
}

1.2.1.4 Sync

// 核心!抽象队列同步器(AQS)
abstract static class Sync extends AbstractQueuedSynchronizer {
    // 序列ID
    private static final long serialVersionUID = -5179523762034025860L;

    // 获取锁
    abstract void lock();

    // 非公平锁实现方法,跟上面一样,不重复解释
    final boolean nonfairTryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            if (compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
    
    // 尝试释放锁
    protected final boolean tryRelease(int releases) {
        // 统计对象可重入锁次数
        int c = getState() - releases;
        // 当前线程不是对象持有锁对象,非法操作
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
        // 对象操作中,有点"内存屏障"的意思
        boolean free = false;
        // 如果状态为0,不用操作了,没有线程占有该对象
        if (c == 0) {
            // 对象可操作状态
            free = true;
            // 对象无线程占有
            setExclusiveOwnerThread(null);
        }
        // 设置对象可重入锁次数
        setState(c);
        return free;
    }
    
    // 判断当前对象占有线程是否为此时操作线程,可重入锁的必要检查
    protected final boolean isHeldExclusively() {
        return getExclusiveOwnerThread() == Thread.currentThread();
    }
    
    // 获取Condition对象,可对对象进行阻塞(await)和就绪(signal)状态操作
    final ConditionObject newCondition() {
        return new ConditionObject();
    }

    
    // 获取对象占用线程
    final Thread getOwner() {
        return getState() == 0 ? null : getExclusiveOwnerThread();
    }
    
    // 获取对象锁可重入次数
    final int getHoldCount() {
        return isHeldExclusively() ? getState() : 0;
    }
    
    // 对象是否被占用
    final boolean isLocked() {
        return getState() != 0;
    }
}

1.2.2 公平锁

// 传入true,则为创建公平锁
public ReentrantLock(boolean fair) {
    sync = fair ? new FairSync() : new NonfairSync();
}

1.2.2.1 FairSync

// 公平锁
static final class FairSync extends Sync {
    // 序列ID
    private static final long serialVersionUID = -3000897897090466540L;
    
    // 获取锁
    final void lock() {
        acquire(1);
    }

    // 获取可重入锁
    protected final boolean tryAcquire(int acquires) {
        // 当前线程
        final Thread current = Thread.currentThread();
        // 统计对象可重入次数
        int c = getState();
        // 对象无锁状态
        if (c == 0) {
            // 队列为空(这里与非公平不一样,队列没有等待线程他才可以持有)
            if (!hasQueuedPredecessors() &&
                // 设置对象占用状态
                compareAndSetState(0, acquires)) {
                // 设置值对象占用线程
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        // 与非公平锁解释相同
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0)
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
}

1.2.2.2 acquire

// 获取锁
public final void acquire(int arg) {
    // 获取失败
    if (!tryAcquire(arg) &&
        // 加入队列成功
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        // 设置线程中断状态
        selfInterrupt();
}

1.3 AbstractQueuedSynchronizer

图3 AQS祖宗图

关键其实就是等待队列,也叫"CLH"(Craig, Landin, and Hagersten)锁队列

图4 CLH结构图(双端队列)

1.3.1 Node节点

static final class Node {

    // 共享节点
    static final Node SHARED = new Node();
    // 排他节点
    static final Node EXCLUSIVE = null;

    // 取消状态:其实就是废物了,等待被GC
    static final int CANCELLED =  1;
    // 
    static final int SIGNAL    = -1;
    /** waitStatus value to indicate thread is waiting on condition */
    static final int CONDITION = -2;
    /**
     * waitStatus value to indicate the next acquireShared should
     * unconditionally propagate
     */
    static final int PROPAGATE = -3;

    /**
     * Status field, taking on only the values:
     *   SIGNAL:     The successor of this node is (or will soon be)
     *               blocked (via park), so the current node must
     *               unpark its successor when it releases or
     *               cancels. To avoid races, acquire methods must
     *               first indicate they need a signal,
     *               then retry the atomic acquire, and then,
     *               on failure, block.
     *   CANCELLED:  This node is cancelled due to timeout or interrupt.
     *               Nodes never leave this state. In particular,
     *               a thread with cancelled node never again blocks.
     *   CONDITION:  This node is currently on a condition queue.
     *               It will not be used as a sync queue node
     *               until transferred, at which time the status
     *               will be set to 0. (Use of this value here has
     *               nothing to do with the other uses of the
     *               field, but simplifies mechanics.)
     *   PROPAGATE:  A releaseShared should be propagated to other
     *               nodes. This is set (for head node only) in
     *               doReleaseShared to ensure propagation
     *               continues, even if other operations have
     *               since intervened.
     *   0:          None of the above
     *
     * The values are arranged numerically to simplify use.
     * Non-negative values mean that a node doesn't need to
     * signal. So, most code doesn't need to check for particular
     * values, just for sign.
     *
     * The field is initialized to 0 for normal sync nodes, and
     * CONDITION for condition nodes.  It is modified using CAS
     * (or when possible, unconditional volatile writes).
     */
    volatile int waitStatus;

    /**
     * Link to predecessor node that current node/thread relies on
     * for checking waitStatus. Assigned during enqueuing, and nulled
     * out (for sake of GC) only upon dequeuing.  Also, upon
     * cancellation of a predecessor, we short-circuit while
     * finding a non-cancelled one, which will always exist
     * because the head node is never cancelled: A node becomes
     * head only as a result of successful acquire. A
     * cancelled thread never succeeds in acquiring, and a thread only
     * cancels itself, not any other node.
     */
    volatile Node prev;

    /**
     * Link to the successor node that the current node/thread
     * unparks upon release. Assigned during enqueuing, adjusted
     * when bypassing cancelled predecessors, and nulled out (for
     * sake of GC) when dequeued.  The enq operation does not
     * assign next field of a predecessor until after attachment,
     * so seeing a null next field does not necessarily mean that
     * node is at end of queue. However, if a next field appears
     * to be null, we can scan prev's from the tail to
     * double-check.  The next field of cancelled nodes is set to
     * point to the node itself instead of null, to make life
     * easier for isOnSyncQueue.
     */
    volatile Node next;

    /**
     * The thread that enqueued this node.  Initialized on
     * construction and nulled out after use.
     */
    volatile Thread thread;

    /**
     * Link to next node waiting on condition, or the special
     * value SHARED.  Because condition queues are accessed only
     * when holding in exclusive mode, we just need a simple
     * linked queue to hold nodes while they are waiting on
     * conditions. They are then transferred to the queue to
     * re-acquire. And because conditions can only be exclusive,
     * we save a field by using special value to indicate shared
     * mode.
     */
    Node nextWaiter;

    /**
     * Returns true if node is waiting in shared mode.
     */
    final boolean isShared() {
        return nextWaiter == SHARED;
    }

    /**
     * Returns previous node, or throws NullPointerException if null.
     * Use when predecessor cannot be null.  The null check could
     * be elided, but is present to help the VM.
     *
     * @return the predecessor of this node
     */
    final Node predecessor() throws NullPointerException {
        Node p = prev;
        if (p == null)
            throw new NullPointerException();
        else
            return p;
    }

    Node() {    // Used to establish initial head or SHARED marker
    }

    Node(Thread thread, Node mode) {     // Used by addWaiter
        this.nextWaiter = mode;
        this.thread = thread;
    }

    Node(Thread thread, int waitStatus) { // Used by Condition
        this.waitStatus = waitStatus;
        this.thread = thread;
    }
}

1.4 总结

概念

解释

非公平锁与公平锁的区别

非公平锁:

  1. 查看对象是否空闲状态 ;

  1. 空闲则占有锁 ;

  1. 非空闲则查看当前占有该对象的线程是否为当前线程(可重入锁),是则进入 ;

  1. 不是当前线程则再次尝试是否能获取锁,可以则拥有锁;

  1. 获取不到则加入等待队列(AQS)。

公平锁:

  1. 查看对象是否空闲状态 ;

  1. 空闲则占有锁;

  1. 非空闲则查看当前占有该对象的线程是否为当前线程(可重入锁),是则进入 ;

  1. 不是则直接加入等待队列。

ReentrantLock与synchronized的区别

  1. ReentrantLock是Java实现类,synchronized是Java关键字,一个显式代码,一个隐式实现;

  1. ReentrantLock可以定义公平和非公平锁,synchronized只能定义非公平锁;

  1. ReentrantLock是靠lock和unlock对对象占有和释放,synchronized是通过字节码(monitorenter和monitorexit);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/179634.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringMVC -->ant风格的路径 -->占位符 -->获取请求参数 -->@RequestParam

文章目录SpringMVC支持ant风格的路径SpringMVC支持路径中的占位符SpringMVC获取请求参数通过servletAPI获取通过控制器方法的形参获取请求参数RequestParam注解处理请求参数和控制器方法的形参的映射关系代码样例SpringMVC支持ant风格的路径 &#xff1f;&#xff1a;表示任意的…

爆火微信公众号自定义早安推送,爱她就给她推送

为女朋友打造专属早安推送先上截图电脑端看的效果手机端看的效果一、申请微信公众号测试号二、让他/她扫码关注测试公众号三、新增模板消息四、天气API五、使用 leancloud 部署云函数六、源代码先上截图 电脑端看的效果 手机端看的效果 一、申请微信公众号测试号 https://mp.w…

Kettle(7):插入/更新组件

1 组件介绍 插入/更新组件能够将Kettle抽取的数据&#xff0c;与某个表的数据进行对比&#xff0c;如果数据存在就更新&#xff0c;不存在就插入。 2 需求 修改 t_user中的张三这一行数据&#xff0c;修改age为80 同时&#xff0c;我们想要使用Kettle将 t_user1 中的张三这一…

【编程入门】N种编程语言做个记事本

背景 前面已输出多个系列&#xff1a; 《十余种编程语言做个计算器》 《十余种编程语言写2048小游戏》 《17种编程语言10种排序算法》 《十余种编程语言写博客系统》 《十余种编程语言写云笔记》 本系列对比云笔记&#xff0c;将更为简化&#xff0c;去掉了网络调用&#xff0…

量化选股——基于多因子模型的量化策略(第1部分—因子测算策略构建)

文章目录1.多因子模型概述2.因子挖掘3.多因子策略4.多因子策略构建基于多因子的策略通用流程Fama-French三因子因子效果测算方法因子测算结论&量化策略构建东西有点多&#xff0c;拆开成多个文章&#xff0c;边写边整合~&#xff0c;应该会分成2部分&#xff1a; 第1部分—…

【每日一道智力题】之坤坤猜生日(面试高频)

&#x1f680;write in front&#x1f680; &#x1f4dc;所属专栏&#xff1a;每日一题 &#x1f6f0;️博客主页&#xff1a;睿睿的博客主页 &#x1f6f0;️代码仓库&#xff1a;&#x1f389;VS2022_C语言仓库 &#x1f3a1;您的点赞、关注、收藏、评论&#xff0c;是对我最…

文本特征工程——下篇

文本特征下篇 针对梯度提升树模型对文本特征进行特征工程&#xff0c;我们需要充分挖掘LabelLabelLabel编码丢失信息&#xff0c;例如上面的名字特征。内部存在非常强的规律&#xff0c;Mr等信息。这些信息反映了性别相关的信息。如果直接进行Label编码就会丢失此类信息&#…

高通平台开发系列讲解(GPS篇)NMEA数据包解析

文章目录 一、通用NMEA语句类型二、 NMEA语句格式2.1、GSV语句2.2、RMC语句2.3、GSA语句2.4、VTG语句2.5、DTM语句2.6、GNS语句2.7、GGA语句2.8、GLL语句2.9、GST语句2.10、ZDA语句沉淀、分享、成长,让自己和他人都能有所收获!😄 📢 NMEA-0183是美国国家海洋电子协会为海…

【读论文】Going deeper in spiking neural networks Vgg and residual architecture

frontiers in Neuroscience 2019 摘要 本文提出一种新的方法来构建深度SNN&#xff0c;并在复杂视觉识别问题上证明其有效性&#xff08;如CIFAR10和ImageNet&#xff09;&#xff1b;该方法应用于VGG和残差网络结构&#xff0c;并获得最优精度&#xff1b;最后给出稀疏事件驱…

力扣刷题| 20. 有效的括号、1047. 删除字符串中的所有相邻重复项、150. 逆波兰表达式求值

文章标题LeetCode 20. 有效的括号题目链接&#x1f517;思路代码实现LeetCode 1047. 删除字符串中的所有相邻重复项题目链接&#x1f517;思路代码实现LeetCode 150. 逆波兰表达式求值题目链接&#x1f517;思路代码实现LeetCode 20. 有效的括号 题目链接&#x1f517; LeetC…

运动基元(一):Dubin‘s曲线【part2】

三、六种Dubin’s轨迹的实现——开始摆盘啦 3.1 LSL LSL的第一段圆弧的曲率 k 1 = k m a x > 0 → s i g n ( k 1 ) = 1 k_1=k_{max}>0\rightarrow

118、【回溯算法】leetcode ——40. 组合总和 II:回溯法+剪枝优化(C++版本)

题目描述 原题链接&#xff1a;40. 组合总和 II 解题思路 本题的特点是&#xff0c;一个允许结果中出现相同数字&#xff0c;但每个元素仅能被选取一次。结果与结果之间不允许有重复&#xff0c;需要去重。 与 77. 组合&#xff08;回溯法剪枝优化&#xff09; 的相同之处在于…

【JavaSE专栏9】Java 注释知多少

作者主页&#xff1a;Designer 小郑 作者简介&#xff1a;Java全栈软件工程师一枚&#xff0c;来自浙江宁波&#xff0c;负责开发管理公司OA项目&#xff0c;专注软件前后端开发&#xff08;Vue、SpringBoot和微信小程序&#xff09;、系统定制、远程技术指导。CSDN学院、蓝桥云…

斐波那契数列的--------5种算法(又称“兔子数列”)

斐波那契数列&#xff08;Fibonacci sequence&#xff09;&#xff0c;又称黄金分割数列&#xff0c;因数学家莱昂纳多斐波那契&#xff08;Leonardo Fibonacci&#xff09;以兔子繁殖为例子而引入&#xff0c;故又称为“兔子数列”&#xff0c;指的是这样一个数列&#xff1a;…

决策树-剪枝处理

前言&#xff1a;理解《机器学习》P79-83中的决策树剪枝示例。 决策树生成 原始数据集如下所示&#xff0c;前10行为训练集&#xff0c;后7行为验证集&#xff0c;由此数据集可生成如下所示的决策树。 下面解释未进行剪枝操作的决策树为何如上图所示。 不对解释每个结点和分支…

WPF-3D图形

WPF-3D图形 WPF的3D功能可以在不编写任何c#代码的情况下进行绘制&#xff0c;只需要使用xaml即可完成3D图形的渲染。本文主要讲述了WPF-3D中的关键概念&#xff0c; 以及常用到的命中测试、2d控件如何在3D对象中进行渲染&#xff0c;除此之外&#xff0c;还演示了如何导入外部…

InstanceNorm LayerNorm

InstanceNorm && LayerNorm author: SUFEHeisenberg date: 2023/01/26 先说结论: 将Transformer类比于RNN&#xff1a;一个token就是一层layer&#xff0c;对一整句不如token有意义原生Bert代码或huggingface中用的都是InstanceNorm instead of LayerNorm&#xff…

【AAAI2023】Head-Free Lightweight Semantic Segmentation with Linear Transformer

论文&#xff1a;【AAAI2023】Head-Free Lightweight Semantic Segmentation with Linear Transformer 代码&#xff1a;https://github.com/dongbo811/AFFormer 这是来自阿里巴巴的工作&#xff0c;作者构建了一个轻量级的Transformer网络用于语义分割&#xff0c;主要有两点…

发现下属的学历造假,但是他的工作能力又很强,该开除他吗?

在职场上混&#xff0c;学历是敲门砖还是定音锤呢&#xff1f;一位网友问&#xff1a;发现下属的学历造假&#xff0c;但是他的工作能力又很强&#xff0c;该开除他吗?有人觉得一定要开除&#xff0c;这就是钻空子&#xff0c;受影响最大的人不是他&#xff0c;而是那些真才实…

上采样与下采样

数据分析中的上采样和下采样 背景&#xff1a; 在分类问题中&#xff0c;由于各种原因&#xff0c;我们所获取到的数据集很容易出现正负样本的不平衡&#xff0c;或者某些数据特别多&#xff0c;有些数据则特别少&#xff0c;在这样的数据集中&#xff0c;进行训练&#xff0c…