文本特征工程——下篇

news2025/1/10 21:35:47

文本特征下篇

针对梯度提升树模型对文本特征进行特征工程,我们需要充分挖掘 L a b e l Label Label编码丢失信息,例如上面的名字特征。内部存在非常强的规律,Mr等信息。这些信息反映了性别相关的信息。如果直接进行Label编码就会丢失此类信息,所以我们可以通过文本技巧对其进行挖掘。在本文中,我们对现在常用的文本特征进行汇总。在上篇中介绍过的此处不在赘述。
在这里插入图片描述

词汇属性特征

每个词都有其所属的属性,例如是名词,动词,还是形容词等等。词汇属性特征很多时候能帮助模型带来效果上的微弱提升,可以作为一类补充信息。
在这里插入图片描述

文本向量特征

T D I D F TDIDF TDIDF特征可以缓解词频特征的高频词汇特征带来的问题,同时通过N-Gram的策略还可以间接捕捉文本中的词的关系,但是这些信息的捕捉还是较差的,而且N-Gram的策略还会使得字典过大,带来存储的问题。但是词向量特征却可以很好地缓解这两个问题

词嵌入模型通过建立所选词与相邻前后词之间的概率分布,将词映射到某个维度的向量。这样我们就仅仅只需要记录每个词对应的向量,而且在实践中我们发现基于词向量的特征往往能取得更好的效果,这也从侧面说明了词向量的形式可以更好地捕捉词与词之间的关系

在这里插入图片描述
目前可以使用** G e n s i m Gensim Gensim来抽取词向量**,因为我们抽取的是基于词的向量,而不同文本的词的个数是不一样的,所以最后还需要通过某种转化将我们的的文本特征转化为相同维度的特征。最为常见的就是下面两种策略:

计算统计特征:例如均值、中位数、方差等等。

先将文本长度进行截断,缺失的补0,然后进行PCA,TSNE等转化;

目前可以产出词向量的策略非常多,例如Word2Vec,Glove等等,还有许多最新预训练好的包都可以直接拿过来使用。

import gensim.downloader as gensim_api
glove_model = gensim_api.load("glove-wiki-gigaword-300") 
word = "love"
glove_model[word]

HashVector

不管是CounterVector,TfidfVectorizer还是Word2Vector等词向量的方式抽取的特征我们都需要存储一个映射表,这会带来非常大的内存压力,但我们仍然需要将文档编码为向量,这个时候我们就需要用到HashVector,HashingVectorizer不存储结果词汇表,该方法使用单向哈希方法将单词转化成整数,因而我们不需要词汇表,可以选择任意长的固定长度向量,这对于大型数据集非常有效。缺点是哈希量化是单向的,因此无法将编码转换回单词,在很多有监督学习中是不影响的。

因为我们使用的是HashVector就自然会存在散列冲突的问题(如果矩阵大小太小,则必然会发生这种情况),在计算资源达到最大值的情况下,HashVector是非常好的特征

from sklearn.feature_extraction.text import HashingVectorizer
text = ["The quick brown fox jumped over the lazy dog."]
vectorizer = HashingVectorizer(n_features=20)
vector = vectorizer.transform(text)
print(vector.shape)
print(vector.toarray())
(1, 20)
[[ 0.          0.          0.          0.          0.          0.33333333
   0.         -0.33333333  0.33333333  0.          0.          0.33333333
   0.          0.          0.         -0.33333333  0.          0.
  -0.66666667  0.        ]]

文本语言信息

在很多问题中**,并不是所有的文本都是同一种语言,这个时候我们需要对不同的文本进行分类,判断其是哪一种类型的语言**。

在这里插入图片描述

import pandas as pd
 
import langdetect 
 
df = pd.DataFrame()
df['text'] = ['I love it.', '我喜欢你。', 'I think you are great!', 'OK!', '太棒了。', 'No pro.']
df['lang'] = df["text"].apply(lambda x: langdetect.detect(x) if 
                                 x.strip() != "" else "")
df

在这里插入图片描述

语意特征

情感分析是通过数字或类来表达文本数据的主观情感,在非常多的问题中都至关重要。目前情感分析是自然语言处理中最困难的任务之一,需要处理自然语言的歧义等问题,但是如果我们能很好地挖掘出文本的情感,那么对于我们模型的帮助是非常巨大的

但是一个好的语言模型的训练是非常耗费时间的,如果没有足够的时间或数据时,我们可以使用预先训练好的模型,比如Textblob和Vader。Textblob建立在NLTK之上,是最流行的语言之一,它可以给单词分配极性,并将整个文本的情感作为一个平均值进行估计****。Vader是一个基于规则的模型,目前在社交媒体的数据上使用较多。

import pandas as pd
from textblob import TextBlob
df = pd.DataFrame()
df['text'] = ['I love it.', 'I hate you.', 'I think you are great!', 'She is beautiful.', 'Good!', 'No problem.']
df["sentiment"] = df['text'].apply(lambda x:  TextBlob(x).sentiment.polarity)
df.head()

在这里插入图片描述

特殊词汇特征

标点符号能从侧面反映文本的情感强烈程度等信息,在情感分类,文本分类中有很重要的作用,当然与此同时**,特殊词汇的特征特征则更为重要**。特殊词汇依据问题的不同,会有非常大的不同,我们举几个简单的例子:

  • 文本情感分类问题。
    在这里插入图片描述
  • 我们可以选择直接分类别(每一类情感表示一类)统计每个类别中词汇的出现次数
  • 代码病毒检测问题。
    在这里插入图片描述
    代码的关键词信息都尤为重要,例如截图,联网,发送等特殊词汇会为我们判断该代码文件是否含有病毒提供重要的依据。

NER特征

命名实体识别(Named entity recognition,NER)是用预定义的类别(如人名、地点、组织等)标记非结构化文本中提到的命名实体的过程。这些重要的命名实体在非常多的问题中都很有用。例如判断某用户点击某广告的概率等,可以通过NER识别出广告中的代言人,依据代言人与用户的喜好来判定用户点击某条广告的概率。目前使用较多的NER工具包是SpaCy,关于NER目前能处理多少不同的命名实体,有兴趣的朋友可以看一下Spacy工具包

在这里插入图片描述
除了可与直接抽取我们想要的NER特征,SpaCy还可以对其进行标亮,如下所示。
在这里插入图片描述

import spacy
import pandas as pd
# !pip install zh_core_web_sm-3.0.0-py3-none-any.whl
ner = spacy.load("zh_core_web_sm")
df = pd.DataFrame()
df['txt'] = ['','我喜欢四川。','成都的女孩喜欢吃辣。']
df["tags"] = df["txt"].apply(lambda x: [(tag.text, tag.label_)   for tag in ner(x).ents] )
df 

在这里插入图片描述

txt = '在无锡车站,我遇见了来自南京的你。但没想到你那么喜欢吃四川的火锅。'
doc = ner(txt)
## display result
spacy.displacy.render(doc, style="ent")
 

在无锡车站 FAC,我遇见了来自南京 GPE的你。但没想到你那么喜欢吃四川 GPE的火锅。

K近邻特征

除了LDA主题模型,我们基于向量做的最多的衍生特征就是相似度特征。我们找到距离每个文本最近的N个文本,并将最近的N个文本对应的ID以及其与当前文本的距离作为我们新的特征。

在这里插入图片描述
距离的计算方式可以是**:欧几里距离、consine等等**。依据距离的不同,文本相似度特征可以有非常多。

from sklearn.metrics.pairwise import cosine_similarity
similarity_matrix = cosine_similarity(tfidf_matrix)
similarity_matrix
array([[1.        , 0.36651513, 0.52305744, 0.13448867],
       [0.36651513, 1.        , 0.72875508, 0.54139736],
       [0.52305744, 0.72875508, 1.        , 0.43661098],
       [0.13448867, 0.54139736, 0.43661098, 1.        ]])

聚类特征

和K近邻特征经常一起使用的就是聚类特征。同样地,因为聚类特征的方式是非常多的,最常见的就是Kmeans等等,此处我们列举常见的两种聚类特征

在这里插入图片描述

  • Kmean聚类
  • hierarchy聚类

总结

目前文本相关的问题都是以DeepLearning为主的方案,但上述的许多特征都是非常重要的,可以作为神经网络的Dense侧特征加入模型训练或者直接抽取放入梯度提升树模型进行训练,往往都可以带来不错的提升,因为本系列我们重点是梯度提升树模型的建模,关于DeepLearning的很多训练等策略有兴趣的可以阅读相关的文章自行研究。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/179618.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

高通平台开发系列讲解(GPS篇)NMEA数据包解析

文章目录 一、通用NMEA语句类型二、 NMEA语句格式2.1、GSV语句2.2、RMC语句2.3、GSA语句2.4、VTG语句2.5、DTM语句2.6、GNS语句2.7、GGA语句2.8、GLL语句2.9、GST语句2.10、ZDA语句沉淀、分享、成长,让自己和他人都能有所收获!😄 📢 NMEA-0183是美国国家海洋电子协会为海…

【读论文】Going deeper in spiking neural networks Vgg and residual architecture

frontiers in Neuroscience 2019 摘要 本文提出一种新的方法来构建深度SNN,并在复杂视觉识别问题上证明其有效性(如CIFAR10和ImageNet);该方法应用于VGG和残差网络结构,并获得最优精度;最后给出稀疏事件驱…

力扣刷题| 20. 有效的括号、1047. 删除字符串中的所有相邻重复项、150. 逆波兰表达式求值

文章标题LeetCode 20. 有效的括号题目链接🔗思路代码实现LeetCode 1047. 删除字符串中的所有相邻重复项题目链接🔗思路代码实现LeetCode 150. 逆波兰表达式求值题目链接🔗思路代码实现LeetCode 20. 有效的括号 题目链接🔗 LeetC…

运动基元(一):Dubin‘s曲线【part2】

三、六种Dubin’s轨迹的实现——开始摆盘啦 3.1 LSL LSL的第一段圆弧的曲率 k 1 = k m a x > 0 → s i g n ( k 1 ) = 1 k_1=k_{max}>0\rightarrow

118、【回溯算法】leetcode ——40. 组合总和 II:回溯法+剪枝优化(C++版本)

题目描述 原题链接:40. 组合总和 II 解题思路 本题的特点是,一个允许结果中出现相同数字,但每个元素仅能被选取一次。结果与结果之间不允许有重复,需要去重。 与 77. 组合(回溯法剪枝优化) 的相同之处在于…

【JavaSE专栏9】Java 注释知多少

作者主页:Designer 小郑 作者简介:Java全栈软件工程师一枚,来自浙江宁波,负责开发管理公司OA项目,专注软件前后端开发(Vue、SpringBoot和微信小程序)、系统定制、远程技术指导。CSDN学院、蓝桥云…

斐波那契数列的--------5种算法(又称“兔子数列”)

斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:…

决策树-剪枝处理

前言:理解《机器学习》P79-83中的决策树剪枝示例。 决策树生成 原始数据集如下所示,前10行为训练集,后7行为验证集,由此数据集可生成如下所示的决策树。 下面解释未进行剪枝操作的决策树为何如上图所示。 不对解释每个结点和分支…

WPF-3D图形

WPF-3D图形 WPF的3D功能可以在不编写任何c#代码的情况下进行绘制,只需要使用xaml即可完成3D图形的渲染。本文主要讲述了WPF-3D中的关键概念, 以及常用到的命中测试、2d控件如何在3D对象中进行渲染,除此之外,还演示了如何导入外部…

InstanceNorm LayerNorm

InstanceNorm && LayerNorm author: SUFEHeisenberg date: 2023/01/26 先说结论: 将Transformer类比于RNN:一个token就是一层layer,对一整句不如token有意义原生Bert代码或huggingface中用的都是InstanceNorm instead of LayerNorm&#xff…

【AAAI2023】Head-Free Lightweight Semantic Segmentation with Linear Transformer

论文:【AAAI2023】Head-Free Lightweight Semantic Segmentation with Linear Transformer 代码:https://github.com/dongbo811/AFFormer 这是来自阿里巴巴的工作,作者构建了一个轻量级的Transformer网络用于语义分割,主要有两点…

发现下属的学历造假,但是他的工作能力又很强,该开除他吗?

在职场上混,学历是敲门砖还是定音锤呢?一位网友问:发现下属的学历造假,但是他的工作能力又很强,该开除他吗?有人觉得一定要开除,这就是钻空子,受影响最大的人不是他,而是那些真才实…

上采样与下采样

数据分析中的上采样和下采样 背景: 在分类问题中,由于各种原因,我们所获取到的数据集很容易出现正负样本的不平衡,或者某些数据特别多,有些数据则特别少,在这样的数据集中,进行训练&#xff0c…

OpenCV直方图Java 演示程序

直方图Java 演示程序以下文件编码为utf-8 为佳。代码文件名:OpenCvMain.javapackage org.opencv;import java.net.URL;import java.util.LinkedList;import java.util.List;import org.opencv.core.Core;import org.opencv.core.CvType;import org.opencv.core.Mat;…

Linux常用命令——setpci命令

在线Linux命令查询工具(http://www.lzltool.com/LinuxCommand) setpci 查询和配置PCI设备的使用工具 补充说明 setpci命令是一个查询和配置PCI设备的使用工具。 语法 setpci(选项)(参数)选项 -v:显示指令执行的细节信息; -f:当没有任何…

Opencv形态学操作——腐蚀、膨胀、梯度、开运算、闭运算、礼帽、黑帽(附案例详细讲解及可执行代码)

Opencv形态学操作 腐蚀膨胀梯度开运算闭运算礼帽黑帽总结腐蚀 在地理或者化学中,我们学习过腐蚀,是指在某种 作用下产生损耗与破坏的过程。你也可以理解为减肥。在Opencv中,腐蚀操作可以使白色轮廓变小,也就是说可以去除一些白色的噪声。 如果你接触过卷积核的话,腐蚀就更…

【JavaSE专栏8】运算符、表达式和语句

作者主页:Designer 小郑 作者简介:Java全栈软件工程师一枚,来自浙江宁波,负责开发管理公司OA项目,专注软件前后端开发(Vue、SpringBoot和微信小程序)、系统定制、远程技术指导。CSDN学院、蓝桥云…

盖子的c++小课堂——第十三讲:二维数组

前言 过了几天了,终于有时间更新了,有个通知,以后我不用颜色区分了,不然换了背景看不见,理解一下,蟹蟹~~ 举例 作者:一下是某次奥运会的奖牌榜,你知道如何储存奖牌榜吗~~ 粉丝&am…

机器学习中软投票和硬投票的不同含义和理解

设置一个场景,比如对于今天音乐会韩红会出现的概率三个人三个观点 A:韩红出现的概率为47% B:韩红出现的概率为57% C:韩红出现的概率为97% 软投票:软投票会认为韩红出现的概率为1/3*(47%57%97%)67% 硬投票:…

“子序列问题”系列总结,一文读懂(Java实现)

目录 前言 一、最长递增子序列 1.1、dp定义 1.2、递推公式 1.3、初始化 1.4、注意 1.5、解题代码 二、最长连续递增序列 2.1、分析 2.2、解题代码 三、最长重复子数组 3.1、dp定义 3.2、递推公式 3.3、初始化 3.4、解题代码 四、最长公共子序列 4.1、分析 4.2…