51、部署PaddleSeg的pp_liteseg到MNN框架、OpenVINO框架和OAK框架、NPU(RK3399 PRO)框架

news2024/11/16 12:08:37

基本思想:需要一个快的实例分割模型,由于需要配置oak使用,所以就记录和实现一下微软社区提供的思路,去部署PaddleSeg的轻量级(实际是语义)分割模型

所有的实验模型,花了两天。。。mmp 自己训练模型,开始整自己的业务需求了

链接: https://pan.baidu.com/s/1DrUaSU3u42hRbF8zWR8m2Q?pwd=c7id 提取码: c7id

一、需要本机配置好 openvion和cuda cudnn tensorRT环境,参考附录

ubuntu@ubuntu:~$ python -m pip install paddlepaddle-gpu==2.3.2.post111 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
ubuntu@ubuntu:~$ git clone https://github.com/PaddlePaddle/PaddleSeg.git
Cloning into 'PaddleSeg'...
remote: Enumerating objects: 21959, done.
remote: Counting objects: 100% (13/13), done.
remote: Compressing objects: 100% (12/12), done.
Receiving objects:  22% (4856/21959), 45.23 MiB | 757.00 KiB/s 
Receiving objects:  61% (13554/21959), 245.85 MiB | 299.00 KiB/s 
Receiving objects:  61% (13554/21959), 246.70 MiB | 432.00 KiB/s
remote: Total 21959 (delta 0), reused 6 (delta 0), pack-reused 21946
Receiving objects: 100% (21959/21959), 346.46 MiB | 341.00 KiB/s, done.
Resolving deltas: 100% (14409/14409), done.

配置环境自己搞一下,测试图片

https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.6/configs/pp_liteseg
ubuntu@ubuntu:~/PaddleSeg$ wget https://paddleseg.bj.bcebos.com/dygraph/camvid/pp_liteseg_stdc1_camvid_960x720_10k/model.pdparams

ubuntu@ubuntu:~$ axel -n 100 https://paddleseg.bj.bcebos.com/dataset/camvid.tar

ubuntu@ubuntu:~/PaddleSeg$ python3 predict.py --config /home/ubuntu/PaddleSeg/configs/pp_liteseg/pp_liteseg_stdc1_camvid_960x720_10k.yml --model_path /home/ubuntu/PaddleSeg/model.pdparams --image_path /home/ubuntu/camvid/images/0001TP_007980.png --device 0 --save_dir output --custom_color 0 0 0 255 255 255

测试结果

 挑选这个模型的主要原因是官方提示最快的模型

二、1)转onnx模型,第一次用百度的东西,还是蛮贴心的

将代码中的

model = SavedSegmentationNet(model)  # add argmax to the last layer

执行转换,对比paddle.shape有问题不用在意,因为打开了argmax

ubuntu@ubuntu:~/PaddleSeg$ python3 deploy/python/infer_onnx_trt.py --config /home/ubuntu/PaddleSeg/configs/pp_liteseg/pp_liteseg_stdc1_camvid_960x720_10k.yml --model_path /home/ubuntu/PaddleSeg/model.pdparams --save_dir ./saved --width 960 --height 720
/home/ubuntu/.local/lib/python3.8/site-packages/scipy/fft/__init__.py:97: DeprecationWarning: The module numpy.dual is deprecated.  Instead of using dual, use the functions directly from numpy or scipy.
  from numpy.dual import register_func
/home/ubuntu/.local/lib/python3.8/site-packages/scipy/sparse/sputils.py:17: DeprecationWarning: `np.typeDict` is a deprecated alias for `np.sctypeDict`.
  supported_dtypes = [np.typeDict[x] for x in supported_dtypes]
/home/ubuntu/.local/lib/python3.8/site-packages/scipy/special/orthogonal.py:81: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
  from numpy import (exp, inf, pi, sqrt, floor, sin, cos, around, int,
2022-11-22 14:00:41 [INFO]	Loading pretrained model from https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet1.tar.gz
2022-11-22 14:00:41 [INFO]	There are 145/145 variables loaded into STDCNet.
2022-11-22 14:00:41 [INFO]	Loading pretrained model from /home/ubuntu/PaddleSeg/model.pdparams
2022-11-22 14:00:41 [INFO]	There are 247/247 variables loaded into PPLiteSeg.
2022-11-22 14:00:41 [INFO]	Loaded trained params of model successfully
==input shape: 720 960
out shape: (1, 1, 720, 960)
The paddle model has been predicted by PaddlePaddle.

2022-11-22 14:00:42 [INFO]	Static PaddlePaddle model saved in ./saved/paddle_model_static_onnx_temp_dir.
[Paddle2ONNX] Start to parse PaddlePaddle model...
[Paddle2ONNX] Model file path: ./saved/paddle_model_static_onnx_temp_dir/model.pdmodel
[Paddle2ONNX] Paramters file path: ./saved/paddle_model_static_onnx_temp_dir/model.pdiparams
[Paddle2ONNX] Start to parsing Paddle model...
[Paddle2ONNX] Use opset_version = 11 for ONNX export.
[Paddle2ONNX] PaddlePaddle model is exported as ONNX format now.
2022-11-22 14:00:43 [INFO]	ONNX model saved in ./saved/pp_liteseg_stdc1_camvid_960x720_10k_model.onnx.
Completed export onnx model.

The onnx model has been checked.
The onnx model has been predicted by ONNXRuntime.
(1, 720, 960)
/usr/lib/python3/dist-packages/apport/report.py:13: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
  import fnmatch, glob, traceback, errno, sys, atexit, locale, imp, stat
Traceback (most recent call last):
  File "deploy/python/infer_onnx_trt.py", line 491, in <module>
    export_load_infer(args)
  File "deploy/python/infer_onnx_trt.py", line 439, in export_load_infer
    assert onnx_out.shape == paddle_out.shape
AssertionError

2)基于onnx转mnn模型,在这转ncnn模型存在很多不支持的算子,以后有机会在搞,客户要求2天交工,先完成业务

ubuntu@ubuntu:~/MNN/build$ ./MNNConvert -f ONNX --modelFile /home/ubuntu/PaddleSeg/saved/pp_liteseg_stdc1_camvid_960x720_10k_model.onnx --MNNModel /home/ubuntu/PaddleSeg/saved/pp_liteseg_stdc1_camvid_960x720_10k_model.mnn --bizCode MNN
Start to Convert Other Model Format To MNN Model...
[14:00:51] /home/ubuntu/MNN/tools/converter/source/onnx/onnxConverter.cpp:40: ONNX Model ir version: 8
Start to Optimize the MNN Net...
inputTensors : [ x, ]
outputTensors: [ argmax_0.tmp_0, ]
Converted Success!

3)部署mnn框架上

cmakelists.txt

cmake_minimum_required(VERSION 3.16)
project(SegClion)
set(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_CXX_STANDARD 11)
include_directories(${CMAKE_SOURCE_DIR})
include_directories(${CMAKE_SOURCE_DIR}/include)
include_directories(${CMAKE_SOURCE_DIR}/include/MNN)
find_package(OpenCV REQUIRED)
#message(STATUS ${OpenCV_INCLUDE_DIRS})
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
#链接Opencv库

add_library(libmnn SHARED IMPORTED)
set_target_properties(libmnn PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/lib/libMNN.so)

add_executable(SegClion main.cpp )
target_link_libraries(SegClion ${OpenCV_LIBS}  libmnn )

main.cpp


#include <iostream>
#include <algorithm>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/opencv.hpp>
#include<MNN/Interpreter.hpp>
#include<MNN/ImageProcess.hpp>

using namespace std;
using namespace cv;


int main(int argc, char **argv) {

    cv::Mat bgr = cv::imread("/home/ubuntu/VOCdevkit/0001TP_007980.png");;
    int orignal_width=bgr.cols;
    int orignal_height=bgr.rows;
    int target_width=960;
    int target_height=720;
    cv::Mat resize_img;
    cv::resize(bgr, resize_img, cv::Size(target_width, target_height));
    auto start = chrono::high_resolution_clock::now();    //开始时间

    // MNN inference
    auto mnnNet = std::shared_ptr<MNN::Interpreter>(
            MNN::Interpreter::createFromFile(
                    "/home/ubuntu/PaddleSeg/saved/pp_liteseg_stdc1_camvid_960x720_10k_model.mnn"));
    auto t1 = std::chrono::steady_clock::now();
    MNN::ScheduleConfig netConfig;
    netConfig.type = MNN_FORWARD_CPU;
    netConfig.numThread = 4;

    auto session = mnnNet->createSession(netConfig);
    auto input = mnnNet->getSessionInput(session, nullptr);

    mnnNet->resizeTensor(input, {1, 3, target_height, target_width});
    mnnNet->resizeSession(session);
    MNN::CV::ImageProcess::Config config;

    const float mean_vals[3] = {255 * 0.5f, 255 * 0.5f, 255 * 0.5f};

    const float norm_255[3] = {1.f / (255 * 0.5), 1.f / (255 * 0.5), 1.f / (255 * 0.5)};

    std::shared_ptr<MNN::CV::ImageProcess> pretreat(
            MNN::CV::ImageProcess::create(MNN::CV::BGR, MNN::CV::RGB, mean_vals, 3,
                                          norm_255, 3));

    pretreat->convert(resize_img.data, target_width, target_height, resize_img.step[0], input);

    mnnNet->runSession(session);

    auto Sessionscores = mnnNet->getSessionOutput(session, "argmax_0.tmp_0");

    MNN::Tensor scoresHost(Sessionscores, Sessionscores->getDimensionType());
    Sessionscores->copyToHostTensor(&scoresHost);

    int w = scoresHost.width();
    int h = scoresHost.height();
    int c = scoresHost.channel();
    int b = scoresHost.batch();
    //printf(" w=%d h=%d c=%d b=%d\n", w, h, c, b);
    std::vector<int> vec_host_scores;
   ///
    w=c;
    h=h;
    c=1;
    
    //printf("new_w=%d new_h=%d new_c=%d new_b=%d\n", w, h, c, b);
    for (int i = 0; i < scoresHost.elementSize(); i++) {
        vec_host_scores.emplace_back(scoresHost.host<int>()[i]);
     }
    auto end = chrono::high_resolution_clock::now();    //结束时间
    auto duration = (end - start).count();
    cout << "程序运行时间:" << setprecision(10) << duration / 1000000000.0 << "s"
         << ";  " << duration / 1000000.0 << "ms"
         << ";  " << duration / 1000.0 << "us"
         << endl;

    int num_class = 256;
    vector<int> color_map(num_class * 3);
    for (int i = 0; i < num_class; i++) {
        int j = 0;
        int lab = i;
        while (lab) {
            color_map[i * 3] |= ((lab >> 0 & 1) << (7 - j));
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
            j += 1;
            lab >>= 3;
        }
    }
    cv::Mat pseudo_img(w, h, CV_8UC3, cv::Scalar(0, 0, 0));
    for (int r = 0; r < w; r++) {
        for (int c = 0; c < h; c++) {
            int idx = vec_host_scores[r*h  + c];
            pseudo_img.at<Vec3b>(r, c)[0] = color_map[idx * 3];
            pseudo_img.at<Vec3b>(r, c)[1] = color_map[idx * 3 + 1];
            pseudo_img.at<Vec3b>(r, c)[2] = color_map[idx * 3 + 2];
        }
    }
    cv::Mat result;
    cv::addWeighted(resize_img, 0.4, pseudo_img, 0.6, 0, result, 0);
    cv::imshow("pseudo_img", pseudo_img);
    cv::imwrite("pseudo_img.jpg", pseudo_img);
    cv::imshow("bgr", resize_img);
    cv::imwrite("resize_img.jpg", resize_img);
    cv::imshow("result", result);
    cv::imwrite("result.jpg", result);
    cv::resize(result,result,cv::Size(orignal_width,orignal_height));
    cv::waitKey(0);

    mnnNet->releaseModel();
    mnnNet->releaseSession(session);
    return 0;
}

测试时间

/home/ubuntu/untitled12/cmake-build-debug/SparseInstClion
程序运行时间:0.26398354s;  263.98354ms;  263983.54us

Process finished with exit code 0

测试结果

 三、1)转openvion模型、oak模型、部署

ubuntu@ubuntu:~$ ubuntu@ubuntu:~$ python /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model /home/ubuntu/PaddleSeg/saved/pp_liteseg_stdc1_camvid_960x720_10k_model.onnx --output_dir /home/ubuntu/PaddleSeg/saved/FP16 --input_shape [1,3,720,960] --data_type FP16 --scale_values [127.5,127.5,127.5] --mean_values [127.5,127.5,127.5]

[ SUCCESS ] Generated IR version 10 model.
[ SUCCESS ] XML file: /home/ubuntu/PaddleSeg/saved/FP16/pp_liteseg_stdc1_camvid_960x720_10k_model.xml
[ SUCCESS ] BIN file: /home/ubuntu/PaddleSeg/saved/FP16/pp_liteseg_stdc1_camvid_960x720_10k_model.bin
[ SUCCESS ] Total execution time: 8.82 seconds. 
[ SUCCESS ] Memory consumed: 243 MB. 
It's been a while, check for a new version of Intel(R) Distribution of OpenVINO(TM) toolkit here https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit/download.html?cid=other&source=prod&campid=ww_2021_bu_IOTG_OpenVINO-2021-4-LTS&content=upg_all&medium=organic or on the GitHub*

cmakelists.txt

cmake_minimum_required(VERSION 3.4.1)
set(CMAKE_CXX_STANDARD 14)


project(nanodet_demo)

find_package(OpenCV REQUIRED)
find_package(ngraph REQUIRED)
find_package(InferenceEngine REQUIRED)

include_directories(
    ${OpenCV_INCLUDE_DIRS}
    ${CMAKE_CURRENT_SOURCE_DIR}
    ${CMAKE_CURRENT_BINARY_DIR}
)

add_executable(nanodet_demo main.cpp )

target_link_libraries(
    nanodet_demo
    ${InferenceEngine_LIBRARIES}
    ${NGRAPH_LIBRARIES}
    ${OpenCV_LIBS}
)

main.cpp

#include <inference_engine.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <vector>
#include <chrono>
#include <iomanip> // Header file needed to use setprecision

using namespace std;
using namespace cv;

void preprocess(cv::Mat image, InferenceEngine::Blob::Ptr &blob) {
    int img_w = image.cols;
    int img_h = image.rows;
    int channels = 3;

    InferenceEngine::MemoryBlob::Ptr mblob = InferenceEngine::as<InferenceEngine::MemoryBlob>(blob);
    if (!mblob) {
        THROW_IE_EXCEPTION << "We expect blob to be inherited from MemoryBlob in matU8ToBlob, "
                           << "but by fact we were not able to cast inputBlob to MemoryBlob";
    }
    // locked memory holder should be alive all time while access to its buffer happens
    auto mblobHolder = mblob->wmap();

    float *blob_data = mblobHolder.as<float *>();


    for (size_t c = 0; c < channels; c++) {
        for (size_t h = 0; h < img_h; h++) {
            for (size_t w = 0; w < img_w; w++) {
                blob_data[c * img_w * img_h + h * img_w + w] =
                        (float) image.at<cv::Vec3b>(h, w)[c];
            }
        }
    }
}

int main(int argc, char **argv) {
    cv::Mat bgr = cv::imread("/home/ubuntu/VOCdevkit/0001TP_007980.png");
    int orignal_width = bgr.cols;
    int orignal_height = bgr.rows;
    int target_width = 960;
    int target_height = 720;
    cv::Mat rgb;
    cv::cvtColor(bgr, rgb, cv::COLOR_BGR2RGB);

    cv::Mat resize_img;
    cv::resize(rgb, resize_img, cv::Size(target_width, target_height));
    // resize_img.convertTo(resize_img, CV_32FC1, 1.0 / 255, 0);
    //resize_img = (resize_img - 0.5) / 0.5;
    auto start = chrono::high_resolution_clock::now();    //开始时间

    std::string input_name_ = "x";
    std::string output_name_ = "argmax_0.tmp_0";
    std::string model_path = "/home/ubuntu/PaddleSeg/saved/FP16/pp_liteseg_stdc1_camvid_960x720_10k_model.xml";
    InferenceEngine::Core ie;
    InferenceEngine::CNNNetwork model = ie.ReadNetwork(model_path);
    // prepare input settings
    InferenceEngine::InputsDataMap inputs_map(model.getInputsInfo());
    input_name_ = inputs_map.begin()->first;
    InferenceEngine::InputInfo::Ptr input_info = inputs_map.begin()->second;
    //input_info->setPrecision(InferenceEngine::Precision::FP32);
    //input_info->setLayout(InferenceEngine::Layout::NCHW);



    //prepare output settings
    InferenceEngine::OutputsDataMap outputs_map(model.getOutputsInfo());
    for (auto &output_info : outputs_map) {
        std::cout << "Output:" << output_info.first << std::endl;
        output_info.second->setPrecision(InferenceEngine::Precision::FP32);
    }

    //get network
    InferenceEngine::ExecutableNetwork network_ = ie.LoadNetwork(model, "CPU");
    InferenceEngine::InferRequest infer_request_ = network_.CreateInferRequest();
    InferenceEngine::Blob::Ptr input_blob = infer_request_.GetBlob(input_name_);
    preprocess(resize_img, input_blob);

    // do inference
    infer_request_.Infer();
    const InferenceEngine::Blob::Ptr pred_blob = infer_request_.GetBlob(output_name_);

    auto m_pred = InferenceEngine::as<InferenceEngine::MemoryBlob>(pred_blob);
    auto m_pred_holder = m_pred->rmap();
    const float *pred = m_pred_holder.as<const float *>();
    auto end = chrono::high_resolution_clock::now();    //结束时间
    auto duration = (end - start).count();
    cout << "程序运行时间:" << std::setprecision(10) << duration / 1000000000.0 << "s"
         << ";  " << duration / 1000000.0 << "ms"
         << ";  " << duration / 1000.0 << "us"
         << endl;

    int w = target_height;
    int h = target_width;
    std::vector<int> vec_host_scores;
    for (int i = 0; i < w * h; i++) {
        vec_host_scores.emplace_back(pred[i]);
    }

    int num_class = 256;
    vector<int> color_map(num_class * 3);
    for (int i = 0; i < num_class; i++) {
        int j = 0;
        int lab = i;
        while (lab) {
            color_map[i * 3] |= ((lab >> 0 & 1) << (7 - j));
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
            j += 1;
            lab >>= 3;
        }
    }
    cv::Mat pseudo_img(w, h, CV_8UC3, cv::Scalar(0, 0, 0));
    for (int r = 0; r < w; r++) {
        for (int c = 0; c < h; c++) {
            int idx = vec_host_scores[r * h + c];
            pseudo_img.at<Vec3b>(r, c)[0] = color_map[idx * 3];
            pseudo_img.at<Vec3b>(r, c)[1] = color_map[idx * 3 + 1];
            pseudo_img.at<Vec3b>(r, c)[2] = color_map[idx * 3 + 2];
        }
    }
    cv::Mat result;
    cv::addWeighted(resize_img, 0.4, pseudo_img, 0.6, 0, result, 0);

    cv::imshow("pseudo_img", pseudo_img);
    cv::imwrite("pseudo_img.jpg", pseudo_img);
    cv::imshow("bgr", bgr);
    cv::imwrite("resize_img.jpg", resize_img);
    cv::imshow("result", result);
    cv::imwrite("result.jpg", result);
    cv::resize(result, result, cv::Size(w, h));
    cv::waitKey(0);
    return 0;

}

测试结果

/home/ubuntu/nanodet/demo_openvino/cmake-build-debug/nanodet_demo
Output:argmax_0.tmp_0
程序运行时间:0.274273849s;  274.273849ms;  274273.849us

图片

 2)转oak模型和部署

ubuntu@ubuntu:/opt/intel/openvino_2021/deployment_tools/tools/compile_tool$  ./compile_tool -m /home/ubuntu/PaddleSeg/saved/FP16/pp_liteseg_stdc1_camvid_960x720_10k_model.xml -ip U8 -d MYRIAD -VPU_NUMBER_OF_SHAVES 4 -VPU_NUMBER_OF_CMX_SLICES 4
Inference Engine: 
	IE version ......... 2021.4.1
	Build ........... 2021.4.1-3926-14e67d86634-releases/2021/4

Network inputs:
    x : U8 / NCHW
Network outputs:
    argmax_0.tmp_0 : I32 / CHW
[Warning][VPU][Config] Deprecated option was used : VPU_MYRIAD_PLATFORM
Done. LoadNetwork time elapsed: 6655 ms

ubuntu@ubuntu:/opt/intel/openvino_2021/deployment_tools/tools/compile_tool$ cp pp_liteseg_stdc1_camvid_960x720_10k_model.blob /home/ubuntu/PaddleSeg/saved/FP16

python代码

#!/usr/bin/env python3

import cv2
import depthai as dai
import numpy as np
import argparse
import time
import os
def get_color_map_list(num_classes, custom_color=None):
    """
    Returns the color map for visualizing the segmentation mask,
    which can support arbitrary number of classes.

    Args:
        num_classes (int): Number of classes.
        custom_color (list, optional): Save images with a custom color map. Default: None, use paddleseg's default color map.

    Returns:
        (list). The color map.
    """

    num_classes += 1
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = color_map[3:]

    if custom_color:
        color_map[:len(custom_color)] = custom_color
    return color_map
def visualize(image, result, color_map, save_dir=None, weight=0.6):
    """
    Convert predict result to color image, and save added image.

    Args:
        image (str): The path of origin image.
        result (np.ndarray): The predict result of image.
        color_map (list): The color used to save the prediction results.
        save_dir (str): The directory for saving visual image. Default: None.
        weight (float): The image weight of visual image, and the result weight is (1 - weight). Default: 0.6

    Returns:
        vis_result (np.ndarray): If `save_dir` is None, return the visualized result.
    """

    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    color_map = np.array(color_map).astype("uint8")
    # Use OpenCV LUT for color mapping
    c1 = cv2.LUT(result, color_map[:, 0])
    c2 = cv2.LUT(result, color_map[:, 1])
    c3 = cv2.LUT(result, color_map[:, 2])
    pseudo_img = np.dstack((c3, c2, c1))

    im = image
    vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0)

    if save_dir is not None:
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_name = os.path.split(image)[-1]
        out_path = os.path.join(save_dir, image_name)
        cv2.imwrite(out_path, vis_result)
    else:
        return vis_result



nn_shape = [960,720] #width height
class_num=256
color_map=get_color_map_list(class_num)


# Start defining a pipeline
pipeline = dai.Pipeline()

pipeline.setOpenVINOVersion(version = dai.OpenVINO.VERSION_2021_4)

# Define a neural network that will make predictions based on the source frames
detection_nn = pipeline.create(dai.node.NeuralNetwork)
detection_nn.setBlobPath("/home/ubuntu/PaddleSeg/saved/FP16/pp_liteseg_stdc1_camvid_960x720_10k_model.blob")

detection_nn.setNumPoolFrames(4)
detection_nn.input.setBlocking(False)
detection_nn.setNumInferenceThreads(2)

# Define a source - color camera

cam = pipeline.create(dai.node.ColorCamera)
cam.setPreviewSize(nn_shape[1],nn_shape[0])
cam.setInterleaved(False)
cam.preview.link(detection_nn.input)

cam.setFps(40)

# Create outputs
xout_rgb = pipeline.create(dai.node.XLinkOut)
xout_rgb.setStreamName("nn_input")
xout_rgb.input.setBlocking(False)

detection_nn.passthrough.link(xout_rgb.input)

xout_nn = pipeline.create(dai.node.XLinkOut)
xout_nn.setStreamName("nn")
xout_nn.input.setBlocking(False)

detection_nn.out.link(xout_nn.input)

# Pipeline defined, now the device is assigned and pipeline is started
with dai.Device() as device:
    cams = device.getConnectedCameras()
    device.startPipeline(pipeline)

    # Output queues will be used to get the rgb frames and nn data from the outputs defined above
    q_nn_input = device.getOutputQueue(name="nn_input", maxSize=4, blocking=False)
    q_nn = device.getOutputQueue(name="nn", maxSize=4, blocking=False)

    start_time = time.time()
    counter = 0
    fps = 0
    layer_info_printed = True
    while True:
        # instead of get (blocking) used tryGet (nonblocking) which will return the available data or None otherwise
        in_nn_input = q_nn_input.get()
        in_nn = q_nn.get()
        frame = in_nn_input.getCvFrame()
        layers = in_nn.getAllLayers()
        if layer_info_printed:
            for item in layers:
                print(item.name)
            layer_info_printed=False
        # get layer1 data
        pred = in_nn.getFirstLayerInt32()
        pred = np.array(pred).astype('uint8').reshape(nn_shape[0],nn_shape[1])
        frame = visualize(frame, pred, color_map, None, weight=0.6)
        cv2.imwrite("oak.jpg",frame)
        cv2.putText(frame, "NN fps: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, (255, 0, 0))
        cv2.imshow("nn_input", frame)

        counter+=1
        if (time.time() - start_time) > 1 :
            fps = counter / (time.time() - start_time)

            counter = 0
            start_time = time.time()


        if cv2.waitKey(1) == ord('q'):
            break

测试结果,测试摄像头的

c++代码

cmakelist.txt

cmake_minimum_required(VERSION 3.16)
project(untitled15)
set(CMAKE_CXX_STANDARD 11)
find_package(OpenCV REQUIRED)
#message(STATUS ${OpenCV_INCLUDE_DIRS})
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
include_directories(${CMAKE_SOURCE_DIR}/include)
include_directories(${CMAKE_SOURCE_DIR}/include/utility)
#链接Opencv库
find_package(depthai CONFIG REQUIRED)
add_executable(untitled15 main.cpp include/utility/utility.cpp)
target_link_libraries(untitled15 ${OpenCV_LIBS}  depthai::opencv )

main.cpp


#include <stdio.h>
#include <string>
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#include "utility.hpp"
#include <vector>
#include "depthai/depthai.hpp"
using namespace std;
using namespace std::chrono;
using namespace cv;
int post_process(std::vector<int> vec_host_scores,cv::Mat resize_img,cv::Mat &result, vector<int> color_map,int w,int h){



    cv::Mat pseudo_img(w, h, CV_8UC3, cv::Scalar(0, 0, 0));
    for (int r = 0; r < w; r++) {
        for (int c = 0; c < h; c++) {
            int idx = vec_host_scores[r*h  + c];
            pseudo_img.at<Vec3b>(r, c)[0] = color_map[idx * 3];
            pseudo_img.at<Vec3b>(r, c)[1] = color_map[idx * 3 + 1];
            pseudo_img.at<Vec3b>(r, c)[2] = color_map[idx * 3 + 2];
        }
    }

    cv::addWeighted(resize_img, 0.4, pseudo_img, 0.6, 0, result, 0);
    //cv::imshow("pseudo_img", pseudo_img);
    cv::imwrite(".pseudo_img.jpg", pseudo_img);
    // cv::imshow("bgr", resize_img);
    cv::imwrite("resize_img.jpg", resize_img);
    //cv::imshow("result", result);
    cv::imwrite("result.jpg", result);
    //cv::waitKey(0);
    return 0;
}


int main(int argc, char **argv) {
    int num_class = 256;
    vector<int> color_map(num_class * 3);
    for (int i = 0; i < num_class; i++) {
        int j = 0;
        int lab = i;
        while (lab) {
            color_map[i * 3] |= ((lab >> 0 & 1) << (7 - j));
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
            j += 1;
            lab >>= 3;
        }
    }
    int target_width=960;
    int target_height=720;
    dai::Pipeline pipeline;
    //定义
    auto cam = pipeline.create<dai::node::ColorCamera>();
    cam->setBoardSocket(dai::CameraBoardSocket::RGB);
    cam->setResolution(dai::ColorCameraProperties::SensorResolution::THE_1080_P);
    cam->setPreviewSize(target_height, target_width);  // NN input
    cam->setInterleaved(false);

    auto net = pipeline.create<dai::node::NeuralNetwork>();
    dai::OpenVINO::Blob blob("/home/ubuntu/PaddleSeg/saved/FP16/pp_liteseg_stdc1_camvid_960x720_10k_model.blob");
    net->setBlob(blob);
    net->input.setBlocking(false);

    //基本熟练明白oak的函数使用了 
    cam->preview.link(net->input);



    //定义输出
    auto xlinkParserOut = pipeline.create<dai::node::XLinkOut>();
    xlinkParserOut->setStreamName("parseOut");
    auto xlinkoutOut = pipeline.create<dai::node::XLinkOut>();
    xlinkoutOut->setStreamName("out");

    auto xlinkoutpassthroughOut = pipeline.create<dai::node::XLinkOut>();

    xlinkoutpassthroughOut->setStreamName("passthrough");


    net->out.link(xlinkParserOut->input);

    net->passthrough.link(xlinkoutpassthroughOut->input);

    //结构推送相机
    dai::Device device(pipeline);
    //取帧显示
    auto outqueue = device.getOutputQueue("passthrough", 8, false);//maxsize 代表缓冲数据
    auto detqueue = device.getOutputQueue("parseOut", 8, false);//maxsize 代表缓冲数据

   bool printOutputLayersOnce=true;
    while (true) {


        auto ImgFrame = outqueue->get<dai::ImgFrame>();
        auto frame = ImgFrame->getCvFrame();

        auto inNN = detqueue->get<dai::NNData>();
        if( printOutputLayersOnce&&inNN) {
            std::cout << "Output layer names: ";
            for(const auto& ten : inNN->getAllLayerNames()) {
                std::cout << ten << ", ";
            }
            std::cout << std::endl;
            printOutputLayersOnce = false;
        }
        cv::Mat result;
        auto pred=inNN->getLayerInt32(inNN->getAllLayerNames()[0]);

        post_process(pred,frame,result,color_map,target_width,target_height);
        cv::imshow("demo", frame);
        cv::imshow("result", result);
        cv::imwrite("result.jpg",result);
        cv::waitKey(1);


    }


    return 0;
}

测试结果 感觉有问题,我先用图片测测

 2),我的搞个读图片的比较好


#include <stdio.h>
#include <string>
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#include "utility.hpp"
#include <vector>
#include "depthai/depthai.hpp"
using namespace std;
using namespace std::chrono;
using namespace cv;
int post_process(std::vector<int> vec_host_scores,cv::Mat resize_img,cv::Mat &result, vector<int> color_map,int w,int h){



    cv::Mat pseudo_img(w, h, CV_8UC3, cv::Scalar(0, 0, 0));
    for (int r = 0; r < w; r++) {
        for (int c = 0; c < h; c++) {
            int idx = vec_host_scores[r*h  + c];
            pseudo_img.at<Vec3b>(r, c)[0] = color_map[idx * 3];
            pseudo_img.at<Vec3b>(r, c)[1] = color_map[idx * 3 + 1];
            pseudo_img.at<Vec3b>(r, c)[2] = color_map[idx * 3 + 2];
        }
    }

    cv::addWeighted(resize_img, 0.4, pseudo_img, 0.6, 0, result, 0);
    //cv::imshow("pseudo_img", pseudo_img);
    cv::imwrite(".pseudo_img.jpg", pseudo_img);
    // cv::imshow("bgr", resize_img);
    cv::imwrite("resize_img.jpg", resize_img);
    //cv::imshow("result", result);
    cv::imwrite("result.jpg", result);
    //cv::waitKey(0);
    return 0;
}


int main(int argc, char **argv) {
    int num_class = 256;
    vector<int> color_map(num_class * 3);
    for (int i = 0; i < num_class; i++) {
        int j = 0;
        int lab = i;
        while (lab) {
            color_map[i * 3] |= ((lab >> 0 & 1) << (7 - j));
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
            j += 1;
            lab >>= 3;
        }
    }
    int target_width=960;
    int target_height=720;
    dai::Pipeline pipeline;
    //定义
    auto cam = pipeline.create<dai::node::XLinkIn>();
    cam->setStreamName("inFrame");
    auto net = pipeline.create<dai::node::NeuralNetwork>();
    dai::OpenVINO::Blob blob("/home/ubuntu/PaddleSeg/saved/FP16/pp_liteseg_stdc1_camvid_960x720_10k_model.blob");
    net->setBlob(blob);
    net->input.setBlocking(false);

    //基本熟练明白oak的函数使用了 
    cam->out.link(net->input);



    //定义输出
    auto xlinkParserOut = pipeline.create<dai::node::XLinkOut>();
    xlinkParserOut->setStreamName("parseOut");
    auto xlinkoutOut = pipeline.create<dai::node::XLinkOut>();
    xlinkoutOut->setStreamName("out");

    auto xlinkoutpassthroughOut = pipeline.create<dai::node::XLinkOut>();

    xlinkoutpassthroughOut->setStreamName("passthrough");


    net->out.link(xlinkParserOut->input);

    net->passthrough.link(xlinkoutpassthroughOut->input);

    //结构推送相机
    dai::Device device(pipeline);
    //取帧显示
    auto inqueue = device.getInputQueue("inFrame");//maxsize 代表缓冲数据
    auto detqueue = device.getOutputQueue("parseOut", 8, false);//maxsize 代表缓冲数据

   bool printOutputLayersOnce=true;

   cv::Mat frame=cv::imread("/home/ubuntu/VOCdevkit/0001TP_007980.png");
    while(true) {

        if(frame.empty()) break;

        auto img = std::make_shared<dai::ImgFrame>();
        frame = resizeKeepAspectRatio(frame, cv::Size(target_height, target_width), cv::Scalar(0));
        toPlanar(frame, img->getData());
        img->setTimestamp(steady_clock::now());
        img->setWidth(target_height);
        img->setHeight(target_width);
        inqueue->send(img);

        auto inNN = detqueue->get<dai::NNData>();
        if( printOutputLayersOnce&&inNN) {
            std::cout << "Output layer names: ";
            for(const auto& ten : inNN->getAllLayerNames()) {
                std::cout << ten << ", ";
            }
            std::cout << std::endl;
            printOutputLayersOnce = false;
        }
        cv::Mat result;
        auto pred=inNN->getLayerInt32(inNN->getAllLayerNames()[0]);

        post_process(pred,frame,result,color_map,target_width,target_height);
        cv::imshow("demo", frame);
        cv::imshow("result", result);
        cv::imwrite("result.jpg",result);
        int key = cv::waitKey(1);
        if(key == 'q' || key == 'Q') return 0;
    }

//    while (true) {
//
//
//        auto ImgFrame = outqueue->get<dai::ImgFrame>();
//        auto frame = ImgFrame->getCvFrame();
//
//        auto inNN = detqueue->get<dai::NNData>();
//        if( printOutputLayersOnce&&inNN) {
//            std::cout << "Output layer names: ";
//            for(const auto& ten : inNN->getAllLayerNames()) {
//                std::cout << ten << ", ";
//            }
//            std::cout << std::endl;
//            printOutputLayersOnce = false;
//        }
//        cv::Mat result;
//        auto pred=inNN->getLayerInt32(inNN->getAllLayerNames()[0]);
//
//        post_process(pred,frame,result,color_map,target_width,target_height);
//        cv::imshow("demo", frame);
//        cv::imshow("result", result);
//        cv::imwrite("result.jpg",result);
//        cv::waitKey(1);
//
//
//    }


    return 0;
}

测试图片没有太大问题

 还是训练等宽高的吧,,,

四、转rknn部署rk3399 pro上

dataset.txt

0001TP_007980.png

转换代码

from rknn.api import RKNN

ONNX_MODEL = '/home/ubuntu/PaddleSeg/saved/pp_liteseg_stdc1_camvid_960x720_10k_model.onnx'
RKNN_MODEL = '/home/ubuntu/PaddleSeg/saved/pp_liteseg_stdc1_camvid_960x720_10k_model.rknn'

if __name__ == '__main__':

    # Create RKNN object
    rknn = RKNN(verbose=True)

    # pre-process config
    print('--> config model')
    rknn.config(mean_values=[[127.5, 127.5, 127.5]], std_values=[[127.5, 127.5, 127.5]], reorder_channel='0 1 2',
                target_platform='rk3399pro',
                quantized_dtype='asymmetric_affine-u8', optimization_level=3, output_optimize=1)
    print('done')

    print('--> Loading model')
    ret = rknn.load_onnx(model=ONNX_MODEL)
    if ret != 0:
        print('Load model  failed!')
        exit(ret)
    print('done')

    # Build model
    print('--> Building model')
    ret = rknn.build(do_quantization=True, dataset='dataset.txt')  # ,pre_compile=True
    if ret != 0:
        print('Build pp_liteseg_stdc1_camvid_960x720_10k_model failed!')
        exit(ret)
    print('done')

    # Export rknn model
    print('--> Export RKNN model')
    ret = rknn.export_rknn(RKNN_MODEL)
    if ret != 0:
        print('Export pp_liteseg_stdc1_camvid_960x720_10k_model.rknn failed!')
        exit(ret)
    print('done')

    rknn.release()

转换成功

D Packing Conv_p2o.Conv.8_47 ...
D Quantize @Conv_p2o.Conv.8_47:bias to asymmetric_affine.
D Quantize @Conv_p2o.Conv.8_47:weight to asymmetric_affine.
D Packing Conv_p2o.Conv.9_48 ...
D Quantize @Conv_p2o.Conv.9_48:bias to asymmetric_affine.
D Quantize @Conv_p2o.Conv.9_48:weight to asymmetric_affine.
D Packing Mul_p2o.Mul.1_109_Add_p2o.Add.6_99 ...
D Packing Mul_p2o.Mul.5_54_Add_p2o.Add.9_45 ...
D Packing Mul_p2o.Mul.9_20_Add_p2o.Add.12_16 ...
D Disable rknn op statistic.
D output tensor id = 0, name = ArgMax_p2o.ArgMax.0/out0_0
D input tensor id = 1, name = x_195
I Build config finished.
done
--> Export RKNN model
done

py仿真测试

import os
import urllib
import traceback
import time
import sys
import warnings

import numpy as np
import cv2
from rknn.api import RKNN

RKNN_MODEL = "/home/ubuntu/PaddleSeg/saved/pp_liteseg_stdc1_camvid_960x720_10k_model.rknn"
IMG_PATH = "/home/ubuntu/PycharmProjects/untitled3/0001TP_007980.png"

QUANTIZE_ON = True

def visualize(image, result, color_map, save_dir=None, weight=0.6):
    """
    Convert predict result to color image, and save added image.

    Args:
        image (str): The path of origin image.
        result (np.ndarray): The predict result of image.
        color_map (list): The color used to save the prediction results.
        save_dir (str): The directory for saving visual image. Default: None.
        weight (float): The image weight of visual image, and the result weight is (1 - weight). Default: 0.6

    Returns:
        vis_result (np.ndarray): If `save_dir` is None, return the visualized result.
    """

    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    color_map = np.array(color_map).astype("uint8")
    # Use OpenCV LUT for color mapping
    c1 = cv2.LUT(result, color_map[:, 0])
    c2 = cv2.LUT(result, color_map[:, 1])
    c3 = cv2.LUT(result, color_map[:, 2])
    pseudo_img = np.dstack((c3, c2, c1))

    im = image
    vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0)

    if save_dir is not None:
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_name = os.path.split(image)[-1]
        out_path = os.path.join(save_dir, image_name)
        cv2.imwrite(out_path, vis_result)
    else:
        return vis_result

def get_color_map_list(num_classes, custom_color=None):
    """
    Returns the color map for visualizing the segmentation mask,
    which can support arbitrary number of classes.

    Args:
        num_classes (int): Number of classes.
        custom_color (list, optional): Save images with a custom color map. Default: None, use paddleseg's default color map.

    Returns:
        (list). The color map.
    """

    num_classes += 1
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = color_map[3:]

    if custom_color:
        color_map[:len(custom_color)] = custom_color
    return color_map



if __name__ == "__main__":
    class_num=256
    color_map=get_color_map_list(class_num)
    # Create RKNN object
    rknn = RKNN()

    if not os.path.exists(RKNN_MODEL):
        print("model not exist")
        exit(-1)

    # Load ONNX model
    print("--> Loading model")
    ret = rknn.load_rknn(RKNN_MODEL)
    if ret != 0:
        print("Load rknn model failed!")
        exit(ret)
    print("done")
    # init runtime environment
    print("--> Init runtime environment")
    ret = rknn.init_runtime()
    if ret != 0:
        print("Init runtime environment failed")
        exit(ret)
    print("done")
    image_size = (960, 720)
    src_img = cv2.imread(IMG_PATH)
    resize_img=cv2.resize(src_img,image_size)
    color_img = cv2.cvtColor(resize_img, cv2.COLOR_BGR2RGB)  # hwc rgb
    print("--> Running model")
    start = time.clock()
    pred = rknn.inference(inputs=[color_img])
    # 获取结束时间
    end = time.clock()
    # 计算运行时间
    runTime = end - start
    runTime_ms = runTime * 1000
    # 输出运行时间
    print("运行时间:", runTime_ms, "毫秒")
    pred = np.squeeze(pred).astype('uint8')
    print(pred)
    added_image =visualize(resize_img, pred, color_map, None,weight=0.6)
    cv2.imshow("added",added_image)
    cv2.imwrite("add.jpg",added_image)
    cv2.waitKey(0)
    rknn.release()

测试结果

c++ rk3399 pro测试

cmakelists.txt

cmake_minimum_required(VERSION 3.16)
project(untitled10)
set(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fopenmp ")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp")

include_directories(${CMAKE_SOURCE_DIR})
include_directories(${CMAKE_SOURCE_DIR}/include)
find_package(OpenCV REQUIRED)
#message(STATUS ${OpenCV_INCLUDE_DIRS})
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
#链接Opencv库
add_library(librknn_api SHARED IMPORTED)
set_target_properties(librknn_api PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/lib64/librknn_api.so)


add_executable(untitled10 main.cpp)
target_link_libraries(untitled10 ${OpenCV_LIBS} librknn_api )

main.cpp

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <queue>
#include "rknn_api.h"
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <chrono>
using namespace cv;
using namespace std;
void printRKNNTensor(rknn_tensor_attr *attr) {
    printf("index=%d name=%s n_dims=%d dims=[%d %d %d %d] n_elems=%d size=%d "
           "fmt=%d type=%d qnt_type=%d fl=%d zp=%d scale=%f\n",
           attr->index, attr->name, attr->n_dims, attr->dims[3], attr->dims[2],
           attr->dims[1], attr->dims[0], attr->n_elems, attr->size, 0, attr->type,
           attr->qnt_type, attr->fl, attr->zp, attr->scale);
}

int post_process_u8(float *input0,cv::Mat resize_img,int w,int h){
    std::vector<int> vec_host_scores;
    for(int i=0;i<w*h;i++){
        vec_host_scores.emplace_back(input0[i]);
    }

    int num_class = 256;//提取到外面 只执行一次即可,自己改吧
    vector<int> color_map(num_class * 3);
    for (int i = 0; i < num_class; i++) {
        int j = 0;
        int lab = i;
        while (lab) {
            color_map[i * 3] |= ((lab >> 0 & 1) << (7 - j));
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
            j += 1;
            lab >>= 3;
        }
    }
    cv::Mat pseudo_img(w, h, CV_8UC3, cv::Scalar(0, 0, 0));
    for (int r = 0; r < w; r++) {
        for (int c = 0; c < h; c++) {
            int idx = vec_host_scores[r*h  + c];
            pseudo_img.at<Vec3b>(r, c)[0] = color_map[idx * 3];
            pseudo_img.at<Vec3b>(r, c)[1] = color_map[idx * 3 + 1];
            pseudo_img.at<Vec3b>(r, c)[2] = color_map[idx * 3 + 2];
        }
    }
    cv::Mat result;
    cv::addWeighted(resize_img, 0.4, pseudo_img, 0.6, 0, result, 0);
    //cv::imshow("pseudo_img", pseudo_img);
    cv::imwrite(".pseudo_img.jpg", pseudo_img);
   // cv::imshow("bgr", resize_img);
    cv::imwrite("resize_img.jpg", resize_img);
    //cv::imshow("result", result);
    cv::imwrite("result.jpg", result);
     //cv::waitKey(0);
    return 0;
}

int main(int argc, char **argv) {
    const char *img_path = "../0001TP_007980.png";
    const char *model_path = "../pp_liteseg_stdc1_camvid_960x720_10k_model.rknn";
    const char *post_process_type = "fp";//fp
    const int target_width = 960;
    const int target_height = 720;

    // Load image
    cv::Mat bgr = cv::imread(img_path);
    if (!bgr.data) {
        printf("cv::imread %s fail!\n", img_path);
        return -1;
    }
    cv::Mat rgb;
    //BGR->RGB
    cv::cvtColor(bgr, rgb, cv::COLOR_BGR2RGB);

    cv::Mat img_resize;
    cv::resize(rgb,img_resize,cv::Size(target_width,target_height));
    int width=bgr.cols;
    int height=bgr.rows;


    // Load model
    FILE *fp = fopen(model_path, "rb");
    if (fp == NULL) {
        printf("fopen %s fail!\n", model_path);
        return -1;
    }
    fseek(fp, 0, SEEK_END);
    int model_len = ftell(fp);
    void *model = malloc(model_len);
    fseek(fp, 0, SEEK_SET);
    if (model_len != fread(model, 1, model_len, fp)) {
        printf("fread %s fail!\n", model_path);
        free(model);
        return -1;
    }


    rknn_context ctx = 0;

    int ret = rknn_init(&ctx, model, model_len, 0);
    if (ret < 0) {
        printf("rknn_init fail! ret=%d\n", ret);
        return -1;
    }

    /* Query sdk version */
    rknn_sdk_version version;
    ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &version,
                     sizeof(rknn_sdk_version));
    if (ret < 0) {
        printf("rknn_init error ret=%d\n", ret);
        return -1;
    }
    printf("sdk version: %s driver version: %s\n", version.api_version,
           version.drv_version);


    /* Get input,output attr */
    rknn_input_output_num io_num;
    ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
    if (ret < 0) {
        printf("rknn_init error ret=%d\n", ret);
        return -1;
    }
    printf("model input num: %d, output num: %d\n", io_num.n_input,
           io_num.n_output);

    rknn_tensor_attr input_attrs[io_num.n_input];
    memset(input_attrs, 0, sizeof(input_attrs));
    for (int i = 0; i < io_num.n_input; i++) {
        input_attrs[i].index = i;
        ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]),
                         sizeof(rknn_tensor_attr));
        if (ret < 0) {
            printf("rknn_init error ret=%d\n", ret);
            return -1;
        }
        printRKNNTensor(&(input_attrs[i]));
    }

    rknn_tensor_attr output_attrs[io_num.n_output];
    memset(output_attrs, 0, sizeof(output_attrs));
    for (int i = 0; i < io_num.n_output; i++) {
        output_attrs[i].index = i;
        ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]),
                         sizeof(rknn_tensor_attr));
        printRKNNTensor(&(output_attrs[i]));
    }

    int input_channel = 3;
    int input_width = 0;
    int input_height = 0;
    if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) {
        printf("model is NCHW input fmt\n");
        input_width = input_attrs[0].dims[0];
        input_height = input_attrs[0].dims[1];
        printf("input_width=%d input_height=%d\n", input_width, input_height);
    } else {
        printf("model is NHWC input fmt\n");
        input_width = input_attrs[0].dims[1];
        input_height = input_attrs[0].dims[2];
        printf("input_width=%d input_height=%d\n", input_width, input_height);
    }

    printf("model input height=%d, width=%d, channel=%d\n", input_height, input_width,
           input_channel);


/* Init input tensor */
    rknn_input inputs[1];
    memset(inputs, 0, sizeof(inputs));
    inputs[0].index = 0;
    inputs[0].buf = img_resize.data;
    inputs[0].type = RKNN_TENSOR_UINT8;
    inputs[0].size = input_width * input_height * input_channel;
    inputs[0].fmt = RKNN_TENSOR_NHWC;
    inputs[0].pass_through = 0;

    /* Init output tensor */
    rknn_output outputs[io_num.n_output];
    memset(outputs, 0, sizeof(outputs));
    for (int i = 0; i < io_num.n_output; i++) {
            outputs[i].want_float = 1;
    }
    printf("img.cols: %d, img.rows: %d\n", img_resize.cols, img_resize.rows);
    auto t1=std::chrono::steady_clock::now();
    rknn_inputs_set(ctx, io_num.n_input, inputs);
    ret = rknn_run(ctx, NULL);
    if (ret < 0) {
        printf("ctx error ret=%d\n", ret);
        return -1;
    }
    ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
    if (ret < 0) {
        printf("outputs error ret=%d\n", ret);
        return -1;
    }
    /* Post process */
    std::vector<float> out_scales;
    std::vector<uint8_t> out_zps;
    for (int i = 0; i < io_num.n_output; ++i) {
        out_scales.push_back(output_attrs[i].scale);
        out_zps.push_back(output_attrs[i].zp);
    }

    if (strcmp(post_process_type, "fp") == 0) {
        post_process_u8((float *) outputs[0].buf,img_resize,
                        target_height, target_width);
    }
//毫秒级
    auto t2=std::chrono::steady_clock::now();
    double dr_ms=std::chrono::duration<double,std::milli>(t2-t1).count();
    printf("%lf ms\n",dr_ms);





    ret = rknn_outputs_release(ctx, io_num.n_output, outputs);

    if (ret < 0) {
        printf("rknn_query fail! ret=%d\n", ret);
        goto Error;
    }


    Error:
    if (ctx > 0)
        rknn_destroy(ctx);
    if (model)
        free(model);
    if (fp)
        fclose(fp);
    return 0;
}

测试结果

ubuntu@ubuntu:~$ ssh firefly@10.10.71.229
firefly@10.10.71.229's password: 
 _____ _           __ _       
|  ___(_)_ __ ___ / _| |_   _ 
| |_  | | '__/ _ \ |_| | | | |
|  _| | | | |  __/  _| | |_| |
|_|   |_|_|  \___|_| |_|\__, |
                        |___/ 
Welcome to Ubuntu 20.04.3 LTS (GNU/Linux 4.4.194 aarch64)

 * Documentation:  http://wiki.t-firefly.com
 * Management:     http://www.t-firefly.com

System information as of Wed Nov 23 02:49:58 UTC 2022

System load:   0.00 0.07 0.07  	Up time:       11 min		Local users:   2            	
Memory usage:  10 % of 3777MB 	IP:            10.10.71.229
Usage of /:    64% of 12G    	

Last login: Wed Nov 23 02:45:04 2022 from 10.10.113.206
firefly@firefly:~$ cd sxj731533730/build/
firefly@firefly:~/sxj731533730/build$ make
-- Configuring done
-- Generating done
-- Build files have been written to: /home/firefly/sxj731533730/build
[100%] Built target untitled10
firefly@firefly:~/sxj731533730/build$ ./untitled10 
D RKNNAPI: ==============================================
D RKNNAPI: RKNN VERSION:
D RKNNAPI:   API: 1.6.1 ( build: 2021-03-15 16:31:37)
D RKNNAPI:   DRV: 1.7.1 ( build: 2021-12-10 09:43:11)
D RKNNAPI: ==============================================
sdk version: 1.6.1 (00c4d8b build: 2021-03-15 19:31:37) driver version: 1.7.1 ( build: 2021-12-10 09:43:11)
model input num: 1, output num: 1
index=0 name=x_195 n_dims=4 dims=[1 3 720 960] n_elems=2073600 size=2073600 fmt=0 type=3 qnt_type=2 fl=0 zp=127 scale=0.007843
index=0 name=ArgMax_p2o.ArgMax.0/out0_0 n_dims=3 dims=[0 1 720 960] n_elems=691200 size=1382400 fmt=0 type=4 qnt_type=0 fl=0 zp=0 scale=1.000000
model is NCHW input fmt
input_width=960 input_height=720
model input height=720, width=960, channel=3
img.cols: 960, img.rows: 720
D RKNNAPI: __can_use_fixed_point: use_fixed_point = 1.

468.068165 ms

测试结果

参考

50、ubuntu18.04&20.04+CUDA11.1+cudnn11.3+TensorRT7.2+Deepsteam5.1+vulkan环境搭建和YOLO5部署_sxj731533730的博客-CSDN博客

 30、OAK摄像头使用官方的yolox进行初训练和测试_sxj731533730的博客-CSDN博客

OAKChina – Opencv AI Kit 人工智能套件-南京派驰电子

PaddleSeg/configs/pp_liteseg at release/2.6 · PaddlePaddle/PaddleSeg · GitHub

Ubuntu20.04环境下使用OpenVINO部署BiSeNetV2模型_英特尔边缘计算社区的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/31599.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[附源码]java毕业设计药品销售管理系统

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

【AI】浅谈梯度下降算法(理论篇)

前言 在求解机器学习算法的模型参数&#xff0c;即无约束优化问题时&#xff0c;梯度下降&#xff08;Gradient Descent&#xff09; 是最常采用的方法之一&#xff0c;另一种常用的方法是最小二乘法。 目前正在学习这方面相关的内容&#xff0c;因此简单谈谈与梯度下降法相关…

13T搅拌运输车冷却系统改进设计

目 录 摘 要 1 Abstract 2 1绪论 5 1.1选题背景及意义 5 1.2研究现状 6 1.2.1 影响13T混凝土搅拌运输车冷却系统的因素以及目前存在的问题 6 1.2.2目前存在的问题 6 1.2.3现代冷却系统研究现状及发展方向 7 1.3研究主要内容 8 2 13T混凝土搅拌运输车冷却系统组成功用和选型 9 2…

m基于PTS+TR的OFDM系统PAPR联合抑制算法matlab仿真

目录 1.算法描述 2.仿真效果预览 3.MATLAB部分代码预览 4.完整MATLAB程序 1.算法描述 部分传输序列(Partial Transmit Sequence , PTS)由于其不受载波数量限制&#xff0c;并且能够有效的&#xff0c;无失真的降低OFDM信号峰均比&#xff0c;而受到广泛关注。部分传输序列算…

m基于matlab的无线光通信CDMA闭环链路功率控制算法仿真,对比了OOK,2PPM,4PPM,8PPM,16PPM

目录 1.算法描述 2.仿真效果预览 3.MATLAB部分代码预览 4.完整MATLAB程序 1.算法描述 在光通信领域&#xff0c;多址技术主要有WDM(波分复用)、TDM(时分复用)及OCDMA(光码分多址)三种方式。OCDMA技术从70年代中期开始出现&#xff0c;现在引起了人们的广泛重视。将CDMA(码分…

谁能拒绝一个会动的皮卡丘挂件

说在前面 &#x1f388;相信很多80、90后的朋友&#xff0c;对QQ宠物印象非常深刻&#xff0c;每次开机宠物就会自动跑出来。曾经很多人想饿死他&#xff0c;但失败了&#xff1b;也有很多人一上线就退出&#xff0c;但就是不愿因取消“开机自动开启”的勾选。2018年09月15日&a…

基于simulink的直升机控制系统

目录 1.算法描述 2.仿真效果预览 3.MATLAB部分代码预览 4.完整MATLAB程序 1.算法描述 直升机机体减振为目标,研究基于自适应滤波技术的前馈控制问题.为了模拟机体的力学特性以及旋翼对机体的激振作用,采用了FIR,SIIR等滤波模型进行识别和控制.通过对作动器和与之相适应的滤…

【MyBatis】二、入门程序

第一个程序 一、resources目录 放在resources目录的一般是资源文件、配置文件&#xff0c;直接放在该路径的资源相当于放到了类的根路径下。 二、开发步骤 1.打包方式jar <!--打包方式jar--><packaging>pom</packaging>2.引入依赖 mybatis依赖 mysql驱动…

网页设计成品DW静态网页Html5响应式css3——电影网站bootstrap制作(4页)

HTML实例网页代码, 本实例适合于初学HTML的同学。该实例里面有设置了css的样式设置&#xff0c;有div的样式格局&#xff0c;这个实例比较全面&#xff0c;有助于同学的学习,本文将介绍如何通过从头开始设计个人网站并将其转换为代码的过程来实践设计。 文章目录一、网页介绍一…

求圆心到点的直线与圆的相交点

求圆心到点的直线与圆的相交点 点B为圆上一动点&#xff0c;已知圆心O(x2,y2), 圆外点A(x1,y1)&#xff0c;圆半径r值&#xff0c;求B(x,y)坐标。 由图可知,产生下面两个公式。 m/n y1-y2/x1-x2 m^2n^2r^2 由上面的公式可以得出 n的长度计算公式为n^2 r^2 / [ (y1-y2 / x1-x…

昨日,一老师课前预测日本赢球,结果令人惊叹

前言 嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! 世界杯是当前最为热门的一个体育赛事&#xff0c; 也是很多小伙伴最为喜欢的一个体育运动之一 而在昨日第四场&#xff1a;F组第一轮&#xff0c;比赛时间&#xff1a;2022年11月23日 21:00 德国VS日本 被一老师成功预测…

视频怎么加水印?这里有你想要的答案

现在不管是游戏解说&#xff0c;还是一些网课视频&#xff0c;亦或是视频博主制作的vlog&#xff0c;我们都能看到这些视频带上了水印&#xff0c;它不仅可以防止其他人随意盗用视频&#xff0c;还可以很好地为自己作宣传&#xff0c;吸引流量。不过还是有很多小伙伴没有著作权…

大部分PHP程序员,都搞不懂如何安全代码部署【二】(nginx篇)

在此之前发布了 代码安全部署的&#xff0c;里面写的nginx 配置安全写了一点点&#xff0c;今天具体补充一下nginx 的配置 nginx站点目录及文件URL访问控制 一、根据扩展名限制程序和文件访问 利用nginx配置禁止访问上传资源目录下的PHP、Shell、Perl、Python程序文件。配置…

基于图像识别的小车智能寻迹控制系统

目录 摘要…… I Abstract II 基于图像识别的智能寻迹控制系统设计 I Design of Intelligent tracking Control system based on Image recognition II 目录 III 第1章 绪论 1 1.1 课题背景 1 1.1 国内外文献综述 1 1.2 论文研究内容 2 第2章 基于图像识别的智能寻迹控制系统方…

代码随想录训练营第30天|LeetCode 332.重新安排行程、51. N皇后、 37. 解数独、回溯总结

参考 代码随想录 题目一&#xff1a;LeetCode 332.重新安排流程 这道题目有几个难点&#xff1a; 一个行程中&#xff0c;如果航班处理不好容易变成一个圈&#xff0c;成为死循环有多种解法&#xff0c;字母序靠前排在前面&#xff0c;让很多同学望而退步&#xff0c;如何该…

没有项目管理经验,可以参加PMP考试吗?

咱们先来了解一下PMP&#xff0c;PMP认证是一项针对项目管理的资格认证&#xff0c;属于管理学中的经济/项目管理&#xff0c;也是目前职业资格认证中含金量较高的&#xff0c;堪比MBA、MPA。 许多大型私企和外企在招聘项目管理者和项目组成员的时候都优先考虑持有PMP认证的人…

【问题】Nginx部署vue项目进行跳转二级路由报404无法找到目标页面问题和Nginx部署vue项目访问不了接口

Nginx部署vue项目进行跳转二级路由报404无法找到目标页面问题和Nginx部署vue项目访问不了接口 文章目录Nginx部署vue项目进行跳转二级路由报404无法找到目标页面问题和Nginx部署vue项目访问不了接口Nginx部署vue项目进行跳转二级路由报404无法找到目标页面问题**问题** &#x…

社区垃圾分类督导AI盒子应用的痛点难点分析

载止于2022年底&#xff0c;我司A社区垃圾分类督导AI视频分析盒子已经在华东(上海、杭州、无锡等地&#xff09;&#xff0c;华南地区&#xff08;深圳等地&#xff09;大量上线&#xff0c;本人负责垃圾分类算法AI盒子的开发历时5年之久&#xff0c;从多年试点到现在规模上线使…

react源码分析:组件的创建和更新

这一章节就来讲讲ReactDOM.render()方法的内部实现与流程吧。 因为初始化的源码文件部分所涵盖的内容很多&#xff0c;包括创建渲染、更新渲染、Fiber树的创建与diff&#xff0c;element的创建与插入&#xff0c;还包括一些优化算法&#xff0c;所以我就整个的React执行流程画了…

算法入门 | 二叉树的递归遍历、递归创建系列(递归)

目录 1. 二叉树的遍历规则 2. 二叉树的结构体设计 【leftchild data rightchild】 3. 二叉树的递归先序、中序、后序遍历 4. 利用已知字符串&#xff08;二叉树的先序序列&#xff09;递归创建一棵二叉树 &#xff08;1&#xff09;购买节点函数 &#xff08;2&#xff…