练习时长两年半的tcp三次握手

news2025/1/16 10:57:34

1、TCP是什么?

TCP是面向连接的协议,它基于运输连接来传送TCP报文段,TCP运输连接的建立和释放,是每一次面向连接的通信中必不可少的过程。

TCP运输连接有以下三个阶段:

建立TCP连接,也就是通过三报文握手来建立TCP连接。

数据传送,也就是基于已建立的TCP连接进行可靠的数据传输。

释放连接,也就是在数据传输结束后,还要通过四报文挥手来释放TCP连接。

TCP的运输连接管理就是使运输连接的建立和释放都能正常的进行。

2、TCP首部格式

源端口: 占16比特,写入源端口号,用来 标识发送该TCP报文段的应用进程。 目的端口: 占16比特,写入目的端口号,用来标识接收该TCP报文段的应用进程。

序号: 占32比特,取值范围[0,2^32-1],序号增加到最后一个后,下一个序号就又回到0。指出本TCP报文段数据载荷的第一个字节的序号。

确认号: 占32比特,取值范围[0,2^32-1],确认号增加到最后一个后,下一个确认号就又回到0。指出期望收到对方下一个TCP报文段的数据载荷的第一个字节的序号,同时也是对之前收到的所有数据的确认。若确认号=n,则表明到序号n-1为止的所有数据都已正确接收,期望接收序号为n的数据。

确认标志位ACK: 取值为1时确认号字段才有效;取值为0时确认号字段无效。TCP规定,在连接建立后所有传送的TCP报文段都必须把ACK置1。

数据偏移: 占4比特,并以4字节为单位。用来指出TCP报文段的数据载荷部分的起始处距离TCP报文段的起始处有多远。这个字段实际上是指出了TCP报文段的首部长度。

窗口: 占16比特,以字节为单位。指出发送本报文段的一方的接收窗。

同步标志位SYN: 在TCP连接建立时用来同步序号。终止标志位FIN: 用来释放TCP连接。复位标志位RST: 用来复位TCP连接。

推送标志位PSH: 接收方的TCP收到该标志位为1的报文段会尽快上交应用进程,而不必等到接收缓存都填满后再向上交付。

校验和: 占16比特,检查范围包括TCP报文段的首部和数据载荷两部分。在计算校验和时,要在TCP报文段的前面加上12字节的伪首部。

紧急指针: 占16比特,以字节为单位,用来指明紧急数据的长度。

填充: 由于选项的长度可变,因此使用填充来 确保报文段首部能被4整除,(因为数据偏移字段,也就是首部长度字段,是以4字节为单位的)。

3、TCP的连接建立

TCP 建立连接的过程叫做握手,握手需要在客户和服务器之间交换三个TCP 报文段,称之为三报文握手,采用三报文握手主要是为了防止已失效的连接请求报文段突然又传送到了,因而产生错误。

TCP的连接建立要解决以下三个问题:

1、使TCP双方能够确知对方的存在 。

2、使TCP双方能够协商一些参数( 最大窗口值是否使用窗口扩大选项和时间戳选项,以及服务质量等)。

3、使TCP双方能够对运输实体资源(例如缓存大小连接表中的项目等)进行分配。

4、三次握手图文详解

这是两台要基于TCP进行通信的主机:

主动发起TCP连接建立称为TCP客户(client)。

被动等待TCP连接建立的应用进程称为TCP服务器(server)。

我们可以将TCP建立连接的过程比喻为”握手“,“握手”需要在TCP客户端和服务器之间交换三个TCP报文段。

最初两端的TCP进程都处于关闭状态。

一开始,TCP服务器进程首先创建传输控制块,用来存储TCP连接中的一些重要信息。 例如TCP连接表、指向发送和接收缓存的指针、指向重传队列的指针,当前的发送和接收序号等。之后就准备接受TCP客户进程的连接请求, 此时TCP服务器进程就要进入监听状态等待TCP客户进程的连接请求。

TCP客户进程也是首先创建传输控制块,然后再打算建立。 TCP服务器进程是被动等待来自TCP客户端进程的连接请求,因此称为被动打开连接。

TCP连接时向TCP服务器进程发送TCP连接请求报文段,并进入同步已发送状态。

TCP 连接请求报文段首部中的同步位SYN被设置为1,,表明这是一个tcp连接请求报文段。

序号字段seq被设置了一个初始值x作为TCP客户进程所选择的初始序号。

由于TCP连接建立是由TCP客户进程主动发起的,因此称为主动打开连接。 请注意TCP规定SYN被设置为1的报文段不能携带数据但要消耗掉一个序号。

TCP服务器进程收到TCP连接请求报文段后,如果同意建立连接,则向TCP客户进程发送TCP连接请求确认报文段,并进入同步已接收状态。

该报文段首部中的同步位SYN和确认位ACK 都设置为1,表明这是一个TCP连接请求。

序号字段seq被设置了一个初始值y,作为TCP服务器进程所选择的初始序号。

确认号字段ack的值被设置成了x+1,这是对TCP客户进程所选择的初始序号seq的确认。

请注意这个报文段也不能携带数据,因为它是SYN被设置为一的报文段但同样要消耗掉一个序号。

TCP客户进程收到TCP连接请求确认报文段后,还要向TCP服务器进程发送一个普通的TCP 确认报文段并进入连接已建立状态。

该报文段首部中的确认位ACK被设置为1,表明这是一个普通的TCP确认报文段 。

序号字段seq 被设置为x+1,这是因为TCP客户进程发送的第一个TCP报文段的序号为x,并且不携带数据,因此第二个报文段的序号为x +1。

确认号字段ack被设置为y + 1,这是对TCP服务器进程所选择的初始序号的确认。

请注意TCP规定,普通的TCP确认报文段可以携带数据。但如果不携带数据则不消耗序号,在这种情况下所发送的下一个数据报文段的序号仍是x + 1。

TCP服务器进程收到该确认报文段后也进入连接已建立状态,现在TCP双方都进入了连接已建立状态,他们可以基于已建立好的TCP连接进行可靠的数据传输了。

5、三次握手文字总结

三次握手是 TCP 连接的建立过程。在握手之前,主动打开连接的客户端结束 CLOSE 阶段,被动打开的服务器也结束 CLOSE 阶段,并进入 LISTEN 阶段。随后进入三次握手阶段:

① 首先客户端向服务器发送一个 SYN 包,并等待服务器确认,其中:

标志位为 SYN,表示请求建立连接;

序号为 Seq = x(x 一般取随机数);

随后客户端进入 SYN-SENT 阶段。

② 服务器接收到客户端发来的 SYN 包后,对该包进行确认后结束 LISTEN 阶段,并返回一段 TCP 报文,其中:

标志位为 SYN 和 ACK,表示确认客户端的报文 Seq 序号有效,服务器能正常接收客户端发送的数据,并同意创建新连接;

序号为 Seq = y;

确认号为 Ack = x + 1,表示收到客户端的序号 Seq 并将其值加 1 作为自己确认号 Ack 的值,随后服务器端进入 SYN-RECV 阶段。

③ 客户端接收到发送的 SYN + ACK 包后,明确了从客户端到服务器的数据传输是正常的,从而结束 SYN-SENT 阶段。并返回最后一段报文。其中:

标志位为 ACK,表示确认收到服务器端同意连接的信号;

序号为 Seq = x + 1,表示收到服务器端的确认号 Ack,并将其值作为自己的序号值;

确认号为 Ack= y + 1,表示收到服务器端序号 seq,并将其值加 1 作为自己的确认号 Ack 的值。

随后客户端进入 ESTABLISHED。

当服务器端收到来自客户端确认收到服务器数据的报文后,得知从服务器到客户端的数据传输是正常的,从而结束 SYN-RECV 阶段,进入 ESTABLISHED 阶段,从而完成三次握手。

5、是否可以使用“两报文握手”建立连接?

为什么TCP客户进程最后还要发送一个普通的TCP确认报文段?

考虑这样一种情况,TCP客户进程发出一个TCP连接请求报文段,但该报文段在某些网络节点长时间滞留了,这必然会造成该报文段的超时重传。

假设重传的报文段被TCP服务器进程正常接收,TCP服务器进程给TCP客户进程发送一个TCP连接请求确认报文段,并进入连接已建立状态。

请注意,由于我们改为两报文握手,因此TCP服务器进程发送完TCP连接请求确认报文段后,进入的是连接已建立状态,而不像三报文握手那样进入同步已接收状态,TCP服务器进程并等待TCP客户进程发来针对TCP连接请求确认报文段的普通确认报文段。TCP客户进程收到TCP连接请求确认报文段后进入TCP连接已建立状态,但不会给TCP服务器进程发送针对该报文段的普通确认报文段。

现在,TCP双方都处于连接已建立状态,他们可以相互传输数据,之后可以通过四报文挥手来释放连接,TCP双方都进入了关闭状态。

一段时间后,之前滞留在网络中的那个失效的TCP连接请求报文段到达了TCP服务器进程,TCP 服务器进程会误认为这是TCP客户进程又发起了一个新的TCP连接请求,于是给TCP客户进程发送TCP连接请求确认报文段并进入连接已建立状态。

该报文段到达TCP客户进程,由于TCP客户进程并没有发起新的TCP连接请求,并且处于关闭状态,因此不会理会该报文段。

但TCP服务器进程已进入了连接已建立状态,他认为新的TCP连接已建立好了,并一直等待TCP客户进程发来数据。这将白白浪费TCP服务器进程所在主机的很多资源。

综上所述,采用三报文握手,而不是两报文握手来建立TCP连接,是为了防止已失效的连接请求报文段突然又传送到了TCP服务器进程因而导致错误。

6、两次握手文字总结

三次握手的主要目的是确认自己和对方的发送和接收都是正常的,从而保证了双方能够进行可靠通信。若采用两次握手,当第二次握手后就建立连接的话,此时客户端知道服务器能够正常接收到自己发送的数据,而服务器并不知道客户端是否能够收到自己发送的数据。

我们知道网络往往是非理想状态的(存在丢包和延迟),当客户端发起创建连接的请求时,如果服务器直接创建了这个连接并返回包含 SYN、ACK 和 Seq 等内容的数据包给客户端,这个数据包因为网络传输的原因丢失了,丢失之后客户端就一直接收不到返回的数据包。由于客户端可能设置了一个超时时间,一段时间后就关闭了连接建立的请求,再重新发起新的请求,而服务器端是不知道的,如果没有第三次握手告诉服务器客户端能否收到服务器传输的数据的话,服务器端的端口就会一直开着,等到客户端因超时重新发出请求时,服务器就会重新开启一个端口连接。长此以往, 这样的端口越来越多,就会造成服务器开销的浪费。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/153081.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Oracle打补丁

oralce打补丁 打补丁前提: 一、备份数据库 二、将oracle服务全部停掉 1、查看opatch的版本号 1.1、环境变量配置ORACLE_HOME 1.2、运行opatch version命令,查看opatch的版本号 备注:网上查看opatch的版本号对应的oracle是否匹配,…

【分治策略】查询中位数最接近点对

查询中位数给定线性序集中n个元素和一个整数k 【k(n1)/2】,要求找出这n个元素中第k小的元素,即找中位数。线性序列没有排序,没有重复值。已知快速排序划分时一个划分基准数的位置在确定后,在之后排序中是不会变的。利用此特性,以下…

dataphin如何使用zip文件,离线安装python第三方包?

好久没写文章啦,快过年了啦,打工人要回家啦 背景介绍: 每次在dataphin里使用pandas的时候,都要pip install pandas。dataphin需要下载pandas安装包,比较费时。总而言之,这种方式慢。 所以我要在dataphin的…

【手写 Vue2.x 源码】第十四篇 - 生成 ast 语法树 - 模板解析

一,前言 上篇,主要介绍了生成 ast 语法树-正则说明部分,涉及以下几个点: 简要说明了 HTML模板的解析方式对模板解析相关正则说明和测试 本篇,生成 ast 语法树-代码实现 二,模板解析 模板解析的方式&…

22. 听说你想要用爬虫采集我的手机号?哎 ~ 我展示用的是图片

本篇博客我们实现图片渲染手机号码案例,用于防止爬虫直接采集文字信息。 爬虫训练场 本案例实现的效果如下所示 文章目录bootstrap5 实现名片样式卡片补充数据生成逻辑生成用户 5 个汉字的昵称调用头像 API,生成图片将手机号码生成图片bootstrap5 实现名…

菜鸡二次封装element中table表单

实现效果如下封装的table表单<template><el-table:span-method"arraySpanMethod":header-cell-style"rowClass":cell-style"cellStyle":data"tableData"style"width: 100%; height: 100%">//暂无数据展示<te…

汤姆斯的天堂梦(C++,Dijkstra)

题目描述 汤姆斯生活在一个等级为 000 的星球上。那里的环境极其恶劣&#xff0c;每天 121212 小时的工作和成堆的垃圾让人忍无可忍。他向往着等级为 NNN 的星球上天堂般的生活。 有一些航班将人从低等级的星球送上高一级的星球&#xff0c;有时需要向驾驶员支付一定金额的费…

【跟月影学可视化】学习笔记 41 篇(完结)

说明 【跟月影学可视化】专栏学习笔记。 个人学习笔记源码&#xff1a;https://github.com/kaimo313/visual-learning-demo 一共做了 162 个学习示例以及 41 篇博客学习笔记&#xff0c;要深入学习该课程请支持正版&#xff0c;个人笔记仅供参考。 笔记目录 【图形基础篇…

什么是无源相干定位系统?

无源定位&#xff08;Passive Localization&#xff09;不通过发射信号来探测目标的位置&#xff0c;而是接收目标的有意、无意辐射或反射信号来实现对侦察目标的探测、定位与追踪。接收的信号可以是目标直接辐射的信号&#xff0c;也可以是外辐射源照射到目标后反射或散射的信…

网站关键词怎么优化排名(网站关键词通常可以选择哪些词)

网站核心关键词的选取需要具备哪些条件 在对网站优化的过程中&#xff0c;肯定少不了对网站关键词的选取&#xff0c;关键词的选择又是网站优化中十分重要的一步&#xff0c;那么网站在选择关键词的过程中需要遵循哪些原则呢&#xff1f;关于这个问题老张带你了解一下。 1、首…

wav文件格式分析与详解

wav文件格式分析与详解WAV文件是在PC机平台上很常见的、最经典的多媒体音频文件,最早于1991年8月出现在Windows 3.1操作系统上,文件扩展名为WAV,是WaveFom的简写,也称为波形文件,可直接存储声音波形,还原的波形曲线十分逼真。WAV文件格式简称WAV格式是一种存储声音波形的数字音…

Wijmo 2022 v2 JavaScript UI Crack

Wijmo 2022 v2 采集 by Ω578867473 添加对 Angular 14 和 React 18 的支持以及对 FlexGrid 和 FlexChart 的改进。特征 Angular 14 支持——您今天就可以开始将 Angular 14 应用程序与 Wijmo 结合使用。Wijmo 提供了大量快速、灵活的 Angular 组件&#xff0c;每个组件都有丰富…

【学Vue就跟玩一样】组件-非单文件组件的使用

一&#xff0c;什么是组件实现应用中局部功能代和资源的集合&#xff08;简单来说就是将html&#xff0c;js&#xff0c;css&#xff0c;资源整合起来的一个小盒子&#xff09;理解&#xff1a;用来实现局部(特定)功能效果的代码集合为什么&#xff1a;一个界面的功能很复杂作用…

SD卡损坏了怎么办?sd卡恢复,80%的用户都试过这些方法

SD卡作为一种外部存储设备&#xff0c;多用在数据相机、监控、手机、无人机等设备中&#xff0c;可以帮我们保存很多数据。 但是SD卡也跟其他设备一样&#xff0c;容易发生数据丢失的情况。如果SD卡损坏了&#xff0c;或者我们把里面的数据误删或者格式化&#xff0c;sd卡恢复…

MySQL--什么情况下不建议使用join查询

关于join 当需要查询两个表的交集、并集等数据时&#xff0c;除了嵌套子查询的方式外&#xff0c;还可以使用join的方式提升性能。对于MySQL的join语句&#xff0c;需要两个最基础的“角色”&#xff1a;主表即驱动表&#xff0c;关联表即驱动表。join描述的就是驱动表与被驱动…

云服务器怎样搭建静态网站?

先买好域名和云服务器&#xff0c;然后把云服务器的ip地址和域名解析到一起。 然后登陆云服务器&#xff0c;安装Nginx 我的软件环境是 CentOS 1、安装 Nginx 在 CentOS 上&#xff0c;可直接使用 yum 来安装 Nginx&#xff08;安装时间稍微有点长&#xff0c;安装过程中代码会…

Linux应用编程---10.信号量

Linux应用编程—10.信号量 ​ 信号量用于任务间的同步!简单来理解&#xff0c;信号量是一个被内核维护的整数&#xff0c;这个整数一般是“大于等于零”的&#xff0c;我们对这个信号量的操作一般为&#xff1a;将信号量设置一个值、发布(加上一个信号量)、消耗(减去一个信号量…

LINUX提权之计划任务提权篇

前言 今天给大家带来的是计划任务提权&#xff0c;说起定时任务对于linux很熟悉的小伙伴一定不会陌生&#xff0c;但你有没有想过可以通过定时任务来进行权限提升的操作&#xff0c;本文会根据该知识点进行展开&#xff0c;同时给大家介绍一个用于探测漏洞的工具使用方法&…

线程通信:生产者消费者问题

问题 1.生产者&#xff08;Producer&#xff09;将产品给店员&#xff08;Clerk&#xff09;&#xff0c;而消费者&#xff08;Customer&#xff09;从店员处取走产品&#xff0c;店员一次只能持有固定数量的产品&#xff08;比如&#xff1a;20&#xff09; &#xff0c;如果生…

实验 1 MATLAB 图像处理基础

一、实验目的1. 熟悉启动和退出 MATLAB 的方法。2. 熟悉 MATLAB 命令窗口的组成。3. 掌握 MATLAB 基本绘图函数和图像处理函数的使用。4. 掌握图像内插和灰度图像的集合运算。二、实验例题1. 求下列表达式的值(1) (2) 答&#xff1a;(1)y1exp(2)/2*sin(35*pi/180)y1 2.1191(2)方…