java定位问题工具

news2025/1/22 22:49:26

一、使用 JDK 自带工具查看 JVM 情况

        在我的机器上运行 ls 命令,可以看到 JDK 8 提供了非常多的工具或程序:

        接下来,我会与你介绍些常用的监控工具。你也可以先通过下面这张图了解下各种工具的基本作用:

为了测试这些工具,我们先来写一段代码:启动 10 个死循环的线程,每个线程分配一个 10MB 左右的字符串,然后休眠 10 秒。可以想象到,这个程序会对 GC 造成压力。

//启动10个线程
IntStream.rangeClosed(1, 10).mapToObj(i -> new Thread(() -> {
    while (true) {
        //每一个线程都是一个死循环,休眠10秒,打印10M数据
        String payload = IntStream.rangeClosed(1, 10000000)
                .mapToObj(__ -> "a")
                .collect(Collectors.joining("")) + UUID.randomUUID().toString();
        try {
            TimeUnit.SECONDS.sleep(10);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(payload.length());
    }
})).forEach(Thread::start);


TimeUnit.HOURS.sleep(1);

        修改 pom.xml,配置 spring-boot-maven-plugin 插件打包的 Java 程序的 main 方法类:

<plugin>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-maven-plugin</artifactId>
    <configuration>
        <mainClass>org.geekbang.time.commonmistakes.troubleshootingtools.jdktool.CommonMistakesApplication
        </mainClass>
    </configuration>
</plugin>

        然后使用 java -jar 启动进程,设置 JVM 参数,让堆最小最大都是 1GB:

java -jar common-mistakes-0.0.1-SNAPSHOT.jar -Xms1g -Xmx1g

1、jps

首先,使用 jps 得到 Java 进程列表,这会比使用 ps 来的方便:

        

➜  ~ jps
12707
22261 Launcher
23864 common-mistakes-0.0.1-SNAPSHOT.jar
15608 RemoteMavenServer36
23243 Main
23868 Jps
22893 KotlinCompileDaemon

2、jinfo

然后,可以使用 jinfo 打印 JVM 的各种参数:

➜  ~ jinfo 23864
Java System Properties:
#Wed Jan 29 12:49:47 CST 2020
...
user.name=zhuye
path.separator=\:
os.version=10.15.2
java.runtime.name=Java(TM) SE Runtime Environment
file.encoding=UTF-8
java.vm.name=Java HotSpot(TM) 64-Bit Server VM
...


VM Flags:
-XX:CICompilerCount=4 -XX:ConcGCThreads=2 -XX:G1ConcRefinementThreads=8 -XX:G1HeapRegionSize=1048576 -XX:GCDrainStackTargetSize=64 -XX:InitialHeapSize=268435456 -XX:MarkStackSize=4194304 -XX:MaxHeapSize=4294967296 -XX:MaxNewSize=2576351232 -XX:MinHeapDeltaBytes=1048576 -XX:NonNMethodCodeHeapSize=5835340 -XX:NonProfiledCodeHeapSize=122911450 -XX:ProfiledCodeHeapSize=122911450 -XX:ReservedCodeCacheSize=251658240 -XX:+SegmentedCodeCache -XX:+UseCompressedClassPointers -XX:+UseCompressedOops -XX:+UseG1GC


VM Arguments:
java_command: common-mistakes-0.0.1-SNAPSHOT.jar -Xms1g -Xmx1g
java_class_path (initial): common-mistakes-0.0.1-SNAPSHOT.jar
Launcher Type: SUN_STANDARD

        查看第 15 行和 19 行可以发现,我们设置 JVM 参数的方式不对,-Xms1g 和 -Xmx1g 这两个参数被当成了 Java 程序的启动参数,整个 JVM 目前最大内存是 4GB 左右,而不是 1GB。

        当我们怀疑 JVM 的配置很不正常的时候,要第一时间使用工具来确认参数。除了使用工具确认 JVM 参数外,你也可以打印 VM 参数和程序参数:

System.out.println("VM options");
System.out.println(ManagementFactory.getRuntimeMXBean().getInputArguments().stream().collect(Collectors.joining(System.lineSeparator())));
System.out.println("Program arguments");
System.out.println(Arrays.stream(args).collect(Collectors.joining(System.lineSeparator())));

        把 JVM 参数放到 -jar 之前,重新启动程序,可以看到如下输出,从输出也可以确认这次 JVM 参数的配置正确了:

➜  target git:(master) ✗ java -Xms1g -Xmx1g -jar common-mistakes-0.0.1-SNAPSHOT.jar test
VM options
-Xms1g
-Xmx1g
Program arguments
test

3、jvisualvm

        启动另一个重量级工具 jvisualvm 观察一下程序,可以在概述面板再次确认 JVM 参数设置成功了:

        继续观察监视面板可以看到,JVM 的 GC 活动基本是 10 秒发生一次,堆内存在 250MB 到 900MB 之间波动,活动线程数是 22。我们可以在监视面板看到 JVM 的基本情况,也可以直接在这里进行手动 GC 和堆 Dump 操作:

4、jconsole

        如果希望看到各个内存区的 GC 曲线图,可以使用 jconsole 观察。jconsole 也是一个综合性图形界面监控工具,比 jvisualvm 更方便的一点是,可以用曲线的形式监控各种数据,包括 MBean 中的属性值:

5、jstat

        同样,如果没有条件使用图形界面(毕竟在 Linux 服务器上,我们主要使用命令行工具),又希望看到 GC 趋势的话,我们可以使用 jstat 工具。

        jstat 工具允许以固定的监控频次输出 JVM 的各种监控指标,比如使用 -gcutil 输出 GC 和内存占用汇总信息,每隔 5 秒输出一次,输出 100 次,可以看到 Young GC 比较频繁,而 Full GC 基本 10 秒一次:

➜  ~ jstat -gcutil 23940 5000 100
  S0     S1     E      O      M     CCS    YGC     YGCT    FGC    FGCT    CGC    CGCT     GCT
  0.00 100.00   0.36  87.63  94.30  81.06    539   14.021    33    3.972   837    0.976   18.968
  0.00 100.00   0.60  69.51  94.30  81.06    540   14.029    33    3.972   839    0.978   18.979
  0.00   0.00   0.50  99.81  94.27  81.03    548   14.143    34    4.002   840    0.981   19.126
  0.00 100.00   0.59  70.47  94.27  81.03    549   14.177    34    4.002   844    0.985   19.164
  0.00 100.00   0.57  99.85  94.32  81.09    550   14.204    34    4.002   845    0.990   19.196
  0.00 100.00   0.65  77.69  94.32  81.09    559   14.469    36    4.198   847    0.993   19.659
  0.00 100.00   0.65  77.69  94.32  81.09    559   14.469    36    4.198   847    0.993   19.659
  0.00 100.00   0.70  35.54  94.32  81.09    567   14.763    37    4.378   853    1.001   20.142
  0.00 100.00   0.70  41.22  94.32  81.09    567   14.763    37    4.378   853    1.001   20.142
  0.00 100.00   1.89  96.76  94.32  81.09    574   14.943    38    4.487   859    1.007   20.438
  0.00 100.00   1.39  39.20  94.32  81.09    575   14.946    38    4.487   861    1.010   20.442

        其中,S0 表示 Survivor0 区占用百分比,S1 表示 Survivor1 区占用百分比,E 表示 Eden 区占用百分比,O 表示老年代占用百分比,M 表示元数据区占用百分比,YGC 表示年轻代回收次数,YGCT 表示年轻代回收耗时,FGC 表示老年代回收次数,FGCT 表示老年代回收耗时。

        继续来到线程面板可以看到,大量以 Thread 开头的线程基本都是有节奏的 10 秒运行一下,其他时间都在休眠,和我们的代码逻辑匹配:

点击面板的线程 Dump 按钮,可以查看线程瞬时的线程栈:

6、jstack

        通过命令行工具 jstack,也可以实现抓取线程栈的操作:

➜  ~ jstack 23940
2020-01-29 13:08:15
Full thread dump Java HotSpot(TM) 64-Bit Server VM (11.0.3+12-LTS mixed mode):

...

"main" #1 prio=5 os_prio=31 cpu=440.66ms elapsed=574.86s tid=0x00007ffdd9800000 nid=0x2803 waiting on condition  [0x0000700003849000]
   java.lang.Thread.State: TIMED_WAITING (sleeping)
  at java.lang.Thread.sleep(java.base@11.0.3/Native Method)
  at java.lang.Thread.sleep(java.base@11.0.3/Thread.java:339)
  at java.util.concurrent.TimeUnit.sleep(java.base@11.0.3/TimeUnit.java:446)
  at org.geekbang.time.commonmistakes.troubleshootingtools.jdktool.CommonMistakesApplication.main(CommonMistakesApplication.java:41)
  at jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(java.base@11.0.3/Native Method)
  at jdk.internal.reflect.NativeMethodAccessorImpl.invoke(java.base@11.0.3/NativeMethodAccessorImpl.java:62)
  at jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(java.base@11.0.3/DelegatingMethodAccessorImpl.java:43)
  at java.lang.reflect.Method.invoke(java.base@11.0.3/Method.java:566)
  at org.springframework.boot.loader.MainMethodRunner.run(MainMethodRunner.java:48)
  at org.springframework.boot.loader.Launcher.launch(Launcher.java:87)
  at org.springframework.boot.loader.Launcher.launch(Launcher.java:51)
  at org.springframework.boot.loader.JarLauncher.main(JarLauncher.java:52)

"Thread-1" #13 prio=5 os_prio=31 cpu=17851.77ms elapsed=574.41s tid=0x00007ffdda029000 nid=0x9803 waiting on condition  [0x000070000539d000]
   java.lang.Thread.State: TIMED_WAITING (sleeping)
  at java.lang.Thread.sleep(java.base@11.0.3/Native Method)
  at java.lang.Thread.sleep(java.base@11.0.3/Thread.java:339)
  at java.util.concurrent.TimeUnit.sleep(java.base@11.0.3/TimeUnit.java:446)
  at org.geekbang.time.commonmistakes.troubleshootingtools.jdktool.CommonMistakesApplication.lambda$null$1(CommonMistakesApplication.java:33)
  at org.geekbang.time.commonmistakes.troubleshootingtools.jdktool.CommonMistakesApplication$$Lambda$41/0x00000008000a8c40.run(Unknown Source)
  at java.lang.Thread.run(java.base@11.0.3/Thread.java:834)


...

        抓取后可以使用类似fastthread这样的在线分析工具来分析线程栈。

7、jcmd

        我们来看一下 Java HotSpot 虚拟机的 NMT 功能。

        通过 NMT,我们可以观察细粒度内存使用情况,设置 -XX:NativeMemoryTracking=summary/detail 可以开启 NMT 功能,开启后可以使用 jcmd 工具查看 NMT 数据。

        我们重新启动一次程序,这次加上 JVM 参数以 detail 方式开启 NMT:

-Xms1g -Xmx1g -XX:ThreadStackSize=256k -XX:NativeMemoryTracking=detail

        在这里,我们还增加了 -XX:ThreadStackSize 参数,并将其值设置为 256k,也就是期望把线程栈设置为 256KB。我们通过 NMT 观察一下设置是否成功。

        启动程序后执行如下 jcmd 命令,以概要形式输出 NMT 结果。可以看到,当前有 32 个线程,线程栈总共保留了差不多 4GB 左右的内存。我们明明配置线程栈最大 256KB 啊,为什么会出现 4GB 这么夸张的数字呢,到底哪里出了问题呢?

➜  ~ jcmd 24404 VM.native_memory summary
24404:


Native Memory Tracking:


Total: reserved=6635310KB, committed=5337110KB
-                 Java Heap (reserved=1048576KB, committed=1048576KB)
                            (mmap: reserved=1048576KB, committed=1048576KB)


-                     Class (reserved=1066233KB, committed=15097KB)
                            (classes #902)
                            (malloc=9465KB #908)
                            (mmap: reserved=1056768KB, committed=5632KB)


-                    Thread (reserved=4209797KB, committed=4209797KB)
                            (thread #32)
                            (stack: reserved=4209664KB, committed=4209664KB)
                            (malloc=96KB #165)
                            (arena=37KB #59)


-                      Code (reserved=249823KB, committed=2759KB)
                            (malloc=223KB #730)
                            (mmap: reserved=249600KB, committed=2536KB)


-                        GC (reserved=48700KB, committed=48700KB)
                            (malloc=10384KB #135)
                            (mmap: reserved=38316KB, committed=38316KB)


-                  Compiler (reserved=186KB, committed=186KB)
                            (malloc=56KB #105)
                            (arena=131KB #7)


-                  Internal (reserved=9693KB, committed=9693KB)
                            (malloc=9661KB #2585)
                            (mmap: reserved=32KB, committed=32KB)


-                    Symbol (reserved=2021KB, committed=2021KB)
                            (malloc=1182KB #334)
                            (arena=839KB #1)


-    Native Memory Tracking (reserved=85KB, committed=85KB)
                            (malloc=5KB #53)
                            (tracking overhead=80KB)


-               Arena Chunk (reserved=196KB, committed=196KB)
                            (malloc=196KB)            

        重新以 VM.native_memory detail 参数运行 jcmd:

jcmd 24404 VM.native_memory detail

        有 16 个可疑线程,每一个线程保留了 262144KB 内存,也就是 256MB(通过下图红框可以看到,使用关键字 262144KB for Thread Stack from 搜索到了 16 个结果):

        ThreadStackSize 参数的单位是 KB,所以我们如果要设置线程栈 256KB,那么应该设置 256 而不是 256k。重新设置正确的参数后,使用 jcmd 再次验证下:

        除了用于查看 NMT 外,jcmd 还有许多功能。我们可以通过 help,看到它的所有功能:

jcmd 24781 help

        对于其中每一种功能,我们都可以进一步使用 help 来查看介绍。比如,使用 GC.heap_info 命令可以打印 Java 堆的一些信息

jcmd 24781 help GC.heap_info

二、使用 Wireshark 分析 SQL 批量插入慢的问题

        首先,我们可以在这里下载 Wireshark,启动后选择某个需要捕获的网卡。由于我们连接的是本地的 MySQL,因此选择 loopback 回环网卡:

        

        然后,Wireshark 捕捉这个网卡的所有网络流量。我们可以在上方的显示过滤栏输入 tcp.port == 6657,来过滤出所有 6657 端口的 TCP 请求(因为我们是通过 6657 端口连接 MySQL 的)。

        可以看到,程序运行期间和 MySQL 有大量交互。因为 Wireshark 直接把 TCP 数据包解析为了 MySQL 协议,所以下方窗口可以直接显示 MySQL 请求的 SQL 查询语句。我们看到,testuser 表的每次 insert 操作,插入的都是一行记录:

        如果列表中的 Protocol 没有显示 MySQL 的话,你可以手动点击 Analyze 菜单的 Decode As 菜单,然后加一条规则,把 6657 端口设置为 MySQL 协议:

        这就说明,我们的程序并不是在做批量插入操作,和普通的单条循环插入没有区别。调试程序进入 ClientPreparedStatement 类,可以看到执行批量操作的是 executeBatchInternal 方法。

 优化方式:

        如果有条件的话,优先把 insert 语句优化为一条语句,也就是 executeBatchedInserts 方法;

        如果不行的话,再尝试把 insert 语句优化为多条语句一起提交,也就是 executePreparedBatchAsMultiStatement 方法。

三、使用 MAT 分析 OOM 问题

        对于排查 OOM 问题、分析程序堆内存使用情况,最好的方式就是分析堆转储。        

        Java 的 OutOfMemoryError 是比较严重的问题,需要分析出根因,所以对生产应用一般都会这样设置 JVM 参数,方便发生 OOM 时进行堆转储:

-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=.

1、使用 MAT 分析 OOM 问题,一般可以按照以下思路进行:

       ① 通过支配树功能或直方图功能查看消耗内存最大的类型,来分析内存泄露的大概原因;

       ② 查看那些消耗内存最大的类型、详细的对象明细列表,以及它们的引用链,来定位内存泄露的具体点;

        ③ 配合查看对象属性的功能,可以脱离源码看到对象的各种属性的值和依赖关系,帮助我们理清程序逻辑和参数;

        ④ 辅助使用查看线程栈来看 OOM 问题是否和过多线程有关,甚至可以在线程栈看到 OOM 最后一刻出现异常的线程。

三、使用 Arthas 分析高 CPU 问题

        1、首先,通过 dashboard + thread 命令,基本可以在几秒钟内一键定位问题,找出消耗 CPU 最多的线程和方法栈;

        2、然后,直接 jad 反编译相关代码,来确认根因;

        3、此外,如果调用入参不明确的话,可以使用 watch 观察方法入参,并根据方法执行时间来过滤慢请求的入参。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/950256.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java自定义捕获异常

需求分析 ElectricalCustomerVO electricalCustomerVO new ElectricalCustomerVO(); electricalCustomerVO.setElcNumber(chatRecordsLog.getDeviceNumber()); List<ElectricalCustomerVO> electricalCustomerlist electricalCustomerMapper.selectElectricalCustomer…

Understanding Black-box Predictions via Influence Functions阅读笔记

Understanding Black-box Predictions via Influence Functions阅读笔记 1.案例1----理解模型行为2.案例2----生成对抗训练样本3.案例3----调试域不匹配4.案例4----修正错误标注参考 1.案例1----理解模型行为 通过告诉我们对一个给定的预测“负责”的训练点&#xff0c;影响函数…

七大排序完整版

目录 一、直接插入排序 &#xff08;一&#xff09;单趟直接插入排 1.分析核心代码 2.完整代码 &#xff08;二&#xff09;全部直接插入排 1.分析核心代码 2.完整代码 &#xff08;三&#xff09;时间复杂度和空间复杂度 二、希尔排序 &#xff08;一&#xff09;对…

畅捷通T+用户中locked勒索病毒后该怎么办?勒索病毒解密数据恢复

Locked勒索病毒是一种近年来在全球范围内引起广泛关注的网络安全威胁程序。它是一种加密货币劫持病毒&#xff0c;专门用于加密用户的数据并要求其支付赎金。Locked勒索病毒通过攻击各种系统漏洞和网络薄弱环节&#xff0c;使用户计算机受到感染并被加密锁定时&#xff0c;无法…

Unity+讯飞星火大模型+Web api,实现二次元小姐姐AI聊天互动

1.简述 最近讯飞的星火大模型更新了2.0版本&#xff0c;增强了AI的语言生成能力。毕竟是国产大语言模型&#xff0c;我也尝试使用了一下星火大模型的应用广场&#xff0c;体验还是很不错的。应用广场提供了很多AI助手工具&#xff0c;也支持用户创建自己的AI助手&#xff0c;能…

算法基础第三章

算法基础第三章 1、dfs(深度搜索)1.1、 递归回溯1.2、递归剪枝&#xff08;剪枝就是判断接下来的递归都不会满足条件&#xff0c;直接回溯&#xff0c;不再继续往下无意义的递归&#xff09; 2、bfs(广度搜索)2.1、最优路径&#xff08;只适合于边权都相等的题&#xff09; 3、…

使用 Netty 实现群聊功能的步骤和注意事项

文章目录 前言声明功能说明实现步骤WebSocket 服务启动Channel 初始化HTTP 请求处理HTTP 页面内容WebSocket 请求处理 效果展示总结 前言 通过之前的文章介绍&#xff0c;我们可以深刻认识到Netty在网络编程领域的卓越表现和强大实力。这篇文章将介绍如何利用 Netty 框架开发一…

QT登陆注册界面练习

一、界面展示 二、主要功能界面代码 #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QMainWindow(parent), ui(new Ui::Widget) {ui->setupUi(this);this->setFixedSize(540,410); //设置固定尺寸th…

【计算机组成 课程笔记】2.1 设计自己的计算机

课程链接&#xff1a; 计算机组成_北京大学_中国大学MOOC(慕课) 2 - 1 - 201-设计自己的计算机&#xff08;14‘24’‘&#xff09;_哔哩哔哩_bilibili 什么是指令系统体系结构&#xff1f;这个问题其实非常简单&#xff0c;但要想解释清楚也没有那么容易。我们还是从一个小故事…

兄弟 Goland 咱能一次性将注释设置好不

大家好&#xff0c;我是阿兵云原生 工作中我们都只是写注释是一个好习惯&#xff0c;作为新生代的农名工&#xff0c;特别烦的就是别人不写注释&#xff0c;但是自己偏偏又不喜欢写注释&#x1f602;&#x1f602;&#x1f602; 对于 golang 的注释&#xff0c;我发现很多新朋…

攻防世界-What-is-this

原题 解题思路 解压后文件 没有后缀&#xff0c;不知道是什么文件。用notepad打开找不到flag。 尝试当成压缩包解压。 用stegsolve以打开图片1&#xff0c; 合成两张图片。

MySQL中的表与视图:解密数据库世界的基石

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;CSDN领军人物&#xff0c;全栈领域优质创作者✌&#xff0c;CSDN博客专家&#xff0c;阿里云社区专家博主&#xff0c;2023年6月CSDN上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师…

vue中axios请求篇

vue中如何发起请求? 利用axios来发起请求&#xff0c;但是前期需要配置 首先安装axios 可以使用npm、yarn等进行安装 npm安装方式 npm install axios -sava //在项目文件夹中打开cmd或者终端进行安装依赖 yarn安装方式 yarn add axios 引入axios。我一般是在src下创建一个u…

【C++】学习C++STL中的数组——vector

❤️前言 好久不见大家&#xff01;今天的这篇博客是关于我对于STL(C标准模板库)中的容器vector的学习和理解&#xff0c;希望大家能够喜欢。 正文 vector是STL中的一种序列容器&#xff0c;对应着数据结构中的顺序表&#xff0c;也可以说是数组。在我们正式学习了解vector之前…

spring boot 测试用例

依赖包 <dependency><groupId>org.springframework</groupId><artifactId>spring-test</artifactId><version>5.2.5.RELEASE</version><scope>compile</scope></dependency><dependency><groupId>ju…

Autoware.universe部署05:实车调试

文章目录 一、建图1.1 点云地图1.2 高精地图 二、参数配置三、传感器数据通信接口3.1 雷达点云3.2 图像3.3 IMU3.4 GNSS RTK 四、实车调试4.1 编写启动4.2 修改传感器外参4.3 修改车身参数4.4 实车调试 本文介绍了 Autoware.universe 在实车上的部署&#xff0c;本系列其他文章…

《Web安全基础》04. 文件上传漏洞

web 1&#xff1a;文件上传漏洞2&#xff1a;WAF 绕过2.1&#xff1a;数据溢出2.2&#xff1a;符号变异2.3&#xff1a;数据截断2.4&#xff1a;重复数据 本系列侧重方法论&#xff0c;各工具只是实现目标的载体。 命令与工具只做简单介绍&#xff0c;其使用另见《安全工具录》…

2023京东口腔护理赛道行业数据分析(京东销售数据分析)

近年来&#xff0c;口腔护理逐渐成为年轻人重视的健康领域&#xff0c;从口腔护理整体市场来看&#xff0c;牙膏和牙刷等基础口腔护理产品仍占据主导地位。不过&#xff0c;随着口腔护理市场逐步朝向精致化、专业化、多元化等方向发展&#xff0c;不少新兴口腔护理产品受到消费…

C++学习|CUDA内存管理代码实例

前言&#xff1a;之前介绍了CUDA入门知识&#xff0c;对CUDA编程有了一个基本了解&#xff0c;但是实际写起来还是遇到很多问题&#xff0c;例如cpp文件该怎么调用cuda文件、cpu和gpu之间内存数据怎么交换、如何编写.cu和.cuh文件之类的。本篇文章将会以一个实现向量相加的代码…

【数据结构】二叉数的存储与基本操作的实现

文章目录 &#x1f340;二叉树的存储&#x1f333;二叉树的基本操作&#x1f431;‍&#x1f464;二叉树的创建&#x1f431;‍&#x1f453;二叉树的遍历&#x1f3a1;前中后序遍历&#x1f4cc;前序遍历&#x1f4cc;中序遍历&#x1f4cc;后续遍历 &#x1f6eb;层序遍历&am…