【C++】学习C++STL中的数组——vector

news2024/11/23 15:24:48

❤️前言

        好久不见大家!今天的这篇博客是关于我对于STL(C++标准模板库)中的容器vector的学习和理解,希望大家能够喜欢。

正文

         vector是STL中的一种序列容器,对应着数据结构中的顺序表,也可以说是数组。在我们正式学习了解vector之前,我们先看看C++官网对其的文档介绍。

vector的文档介绍

        这是纯英文的官网链接:cplusplus.com/reference/vector/vector/icon-default.png?t=N7T8https://cplusplus.com/reference/vector/vector/        这是大概的中文翻译:

  1. vector是表示可变大小数组的序列容器。
  2. 就像原生数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
  3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
  4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
  5. 因此,vector占用了更多的存储空间,这是为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
  6. 与其它动态序列容器相比(deque, list and forward_list),vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。

        看不懂也没什么问题,这本来就只是给我们一个大致的vector的印象,接下来我们继续更加细致的了解和学习这个容器。

vector的简单使用

        首先我们知道STL是C++的标准模板库,而vector是其中的一种容器(数据结构),它是一种类模板,通过模板的显式实例化可以产生各种各样不同的类,初始化时vector需要我们给出其中存储的数据类型。

        要使用vector,我们首先要知道如何初始化一个vector对象。这时候我们就需要关注vector对应的构造函数。

vector的构造函数

        如下是C++98中给出的vector构造函数:

         第一个构造函数可以看作无参数的默认构造函数,那个唯一的参数叫做空间配置器,在使用vector时我们基本上可以无视,它的作用就是提高堆区内存资源的存取效率,而且它那里给了缺省参数,一般我们在使用的时候是不怎么需要考虑的。

// 使用这个构造函数初始化vector对象的大致方式:
vector<数据类型> v();
// 存储int类型的数据:
vector<int> v();
// 存储vector<int>类型的数据模拟二维数组:
vector<vector<int>> vv();

        第二个构造函数的效果是初始化出n个值,初始化的值默认调用vector中数据的默认构造函数。

// 使用这个构造函数初始化vector对象的大致方式:
vector<数据类型> v(初始化数据的个数,数据初始值);
// 存储int类型的数据10个10:
vector<int> v(10, 10);
// 存储vector<int>类型的数据模拟n*n的二维数组:
vector<vector<int>> vv(n, vector<int>(n));

        第三个构造函数通过迭代器区间进行构造,我们只需要给出起止的范围即可(迭代器我们在使用string类时就已经接触过了,它是对应着指针的一类对象)。

// 使用这个构造函数初始化vector对象的大致方式:
vector<数据类型> v(起始迭代器,终止迭代器);

// 存储int类型的数据:
int arr[] = { 0,1,2,3,4 };
int* p1 = arr; int* p2 = arr + 5;
vector<int> v(p1,p2);

        第四个构造函数就是拷贝构造函数,使用方式想必不需要过多探讨。

vector的迭代器使用

        下面是关于迭代器(iterator)的简单介绍:

        在STL中,我们要访问顺序容器和关联容器中的元素,需要通过“迭代器(iterator)”进行。迭代器是一个变量,相当于容器和操纵容器的算法之间的中介。迭代器可以指向容器中的某个元素,通过迭代器就可以读写它指向的元素。从这一点上看,迭代器和指针类似。

        简单认识了迭代器之后,让我们看看迭代器在vector中的使用。在vector中,我们一般使用迭代器来对应指针在数组中的操作。通过迭代器,我们可以访问vector中的任意元素。那我们该如何使用迭代器呢?下面举例vector迭代器的使用方式:

vector<int> v(10, 10);

// 创建vector迭代器对象指向v的开头
vector<int>::iterator it = v.begin();
while (it != v.end())
{
	cout << *it << ' ';
	++it;
}

        在上述代码中,我调用v的成员函数begin()为it赋初值,我们大概能看出这里的begin()和end()会返回迭代器的值。顾名思义,begin()给出了v的初始位置对应迭代器的值,end()给出末尾元素后的一个位置的值,也就是对应着一个左闭右开的区间。

        除此之外,还有一种迭代器被称为反向迭代器(reverse_iterator),这种迭代器从最后一个元素为起始点,第一个元素的前一个位置为终止点,是与普通迭代器相反的迭代器,可以对容器里的元素进行反向遍历,对应在成员函数中就是rbegin()和rend()。使用方式:

vector<int> v(10, 10);

// 创建vector反向迭代器对象指向v的末尾
vector<int>::reverse_iterator rit = v.rbegin();
while (rit != v.rend())
{
	cout << *rit << ' ';
	++rit;
}

        我们可以看到,当我们声明一个迭代器时,它的类型名经常会有些复杂,这时候我们就可以想到之前学习过的一种关键字:auto ,它可以自行推导对象的类型(当然,这需要我们对变量赋初值),这使我们在使用长类型名对象时更加的方便。例如上面的反向迭代器声明就可以变为:

auto rit = v.rbegin();

vector的空间使用

        在使用vector时,我们也需要控制内存和数据,类似于我们在学习数据结构时控制顺序表的内存和数据。

        相应的函数有size() capacity() empty() reserve() resize()等。

        其中reserve() 可以改变vector的capacity resize()可以改变vector的size也就是有效数据个数。

这些接口的使用大家可以参考C++的文档:

vector - C++ Reference (cplusplus.com)icon-default.png?t=N7T8https://legacy.cplusplus.com/reference/vector/vector/

vector的增删查改

        对于vector的增删查改,我们比较常用的接口有末端插入push_back()、末端删除pop_back()、重载方括号operator[ ]。

        这些函数也可以参考文档进行学习。

迭代器失效问题

        迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。由此可见,迭代器失效也就类似于我们曾经在C指针阶段非常苦恼的野指针问题。

        可能会引起迭代器失效的操作有:

        1.可能会引起底层空间发生改变的各种操作,都可能会引发迭代器失效。例如:resize、reserve、insert、assign、push_back等。示例代码如下:

vector<int> v{ 1,2,3,4,5,6 };
auto it = v.begin();

// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
// v.resize(100, 8);

// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
// v.reserve(100);

// 插入元素期间,可能会引起扩容,而导致原空间被释放
// v.insert(v.begin(), 0);
// v.push_back(8);

// 给vector重新赋值,可能会引起底层容量改变
v.assign(100, 8);

/*
出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,
而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的
空间,而引起代码运行时崩溃。
解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新
赋值即可。
*/

it = v.begin();

while (it != v.end())
{
	cout << *it << " ";
	++it;
}
cout << endl;

        2.指定位置元素的删除操作--erase,当我们通过erase删除了一个元素之后,那么指向这个元素的迭代器就会失效,因为目前这个迭代器的指向是未知的(它会指向原来的下一个位置)。示例代码如下:

vector<int> v{ 1,2,3,4,5,6 };

auto it = v.begin();
while (it != v.end())
{
	if (*it % 2 == 0)
		it = v.erase(it);
	else
		++it;
}

it = v.begin();
while (it != v.end())
{
	std::cout << *it << " ";
	++it;
}
std::cout << endl;

        总的来说,迭代器失效就类似于野指针问题,我们解决迭代器失效的方式就是为迭代器重新赋值。

vector的模拟实现

        大致了解了vector的使用之后,让我们一起学着模拟实现vector,以此加深我们对与vector的理解,让我们更好的使用它。

namespace MO_lion
{
	template<typename T>
	class vector
	{
	public:
		// 迭代器
		typedef T* iterator;
		typedef const T* const_iterator;

		iterator begin()
		{
			return _start;
		}

		iterator end()
		{
			return _finish;
		}

		const_iterator begin() const
		{
			return _start;
		}

		const_iterator end() const
		{
			return _finish;
		}

		// 构造函数
		vector()
			: _start(nullptr)
			, _finish(nullptr)
			, _end_of_storage(nullptr)
		{}

		// 拷贝构造
		vector(const vector<T>& v)
			: _start(nullptr)
			, _finish(nullptr)
			, _end_of_storage(nullptr)
		{
			reserve(v.capacity());
			for (int i = 0; i < v.size(); ++i)
			{
				_start[i] = v[i];
			}
			_finish += v.size();
		}

		vector(int n, const T& x = T())
		{
			resize(n, x);
		}

		// 扩容
		void reserve(size_t n)
		{
			if (n <= capacity()) return;
			size_t oldsize = size();
			iterator tmp = new T[n];
			if (_start)
			{
				for (int i = 0; i < size(); ++i)
				{
					tmp[i] = _start[i];
				}
				delete[] _start;
			}
			_start = tmp;
			_finish = _start + oldsize;
			_end_of_storage = _start + n;
		}

		void resize(size_t n, const T& x = T())
		{
			if (n > capacity()) reserve(n);
			for (int i = size(); i < n; ++i)
			{
				_start[i] = x;
			}
			_finish = _start + n;
		}

		// 尾插
		void push_back(const T& x)
		{
			//if (_finish == _end_of_storage)
			//{
			//	reserve(capacity() == 0 ? 5 : capacity() * 2);
			//}
			//*_finish = x;
			//_finish++;

			insert(end(), x);
		}

		// 随机位置插入
		iterator insert(iterator pos, const T& x)
		{
			assert(pos <= _finish && pos >= _start);
			if (_finish == _end_of_storage)
			{
				size_t len = pos - _start;
				reserve(capacity() == 0 ? 5 : capacity() * 2);
				pos = _start + len;
			}

			for (int i = size(); i > pos - _start; --i)
			{
				_start[i] = _start[i - 1];
			}

			*pos = x;
			_finish++;

			return pos;
		}

		// 指定位置删除
		iterator erase(iterator pos)
		{
			assert(pos < _finish && pos >= _start);
			for (int i = pos - _start; i < size() - 1; ++i)
			{
				_start[i] = _start[i + 1];
			}
			_finish--;

			return pos;
		}

		// 重载方括号
		T& operator[](size_t n)
		{
			return _start[n];
		}

		const T& operator[](size_t n) const
		{
			return _start[n];
		}

		// 交换两个vector
		void swap(vector<T>& v)
		{
			std::swap(_start, v._start);
			std::swap(_finish, v._finish);
			std::swap(_end_of_storage, v._end_of_storage);
		}

		// 重载等号
		vector<T>& operator=(vector<T> v)
		{
			swap(v);
			return *this;
		}

		// 返回有效数据个数
		size_t size() const
		{
			return _finish - _start;
		}

		// 返回可用空间大小
		size_t capacity() const
		{
			return _end_of_storage - _start;
		}
        
        // 析构函数
		~vector()
		{
			if (_start == nullptr) return;
			delete[] _start;
			_start = nullptr;
			_finish = nullptr;
			_end_of_storage = nullptr;
		}

	private:
        // 将三个指向不同位置的迭代器作为私有成员;
        // 起始位置
		iterator _start;
        // 终止位置
		iterator _finish;
        // 容量的极限位置
		iterator _end_of_storage;
	};

}

        在vector的模拟实现中,有以下问题比较值得注意:

深浅拷贝问题

        由于vector可以存储各种各样不同的数据类型,我们在模拟实现reverse()和拷贝构造函数复制有效数据的过程中使用赋值运算符 "=" 进行操作。

        如果我们像实现string时一样使用memcpy()进行数据拷贝,那么当这样的vector用于存储需要进行资源管理的对象的时候(例如vector<vector<int>>),就会发生错误,因为memcpy()是浅拷贝。而使用 "=" 这里就比较妙了,它可以适配所有的对象,因为大家都有赋值运算符,正常情况下,赋值运算符会适配对应对象的资源管理方式。

重载等号的现代写法

        上面我们可以看到重载等号的写法十分的简洁,实际上是创建了一个临时的vector对象,然后将成员交换给当前对象,相当于复用了拷贝构造的代码,这里有一个比较妙的点就是传参得来的参数是原对象的临时拷贝。

// 交换两个vector
void swap(vector<T>& v)
{
	std::swap(_start, v._start);
	std::swap(_finish, v._finish);
	std::swap(_end_of_storage, v._end_of_storage);
}

// 重载等号
vector<T>& operator=(vector<T> v)
{
	swap(v);
	return *this;
}

🍀结语

        以上内容就是今天的所有vector相关知识啦,接下来我们使用C++经常会使用到vector,希望这篇博客能够对大家有用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/950226.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

spring boot 测试用例

依赖包 <dependency><groupId>org.springframework</groupId><artifactId>spring-test</artifactId><version>5.2.5.RELEASE</version><scope>compile</scope></dependency><dependency><groupId>ju…

Autoware.universe部署05:实车调试

文章目录 一、建图1.1 点云地图1.2 高精地图 二、参数配置三、传感器数据通信接口3.1 雷达点云3.2 图像3.3 IMU3.4 GNSS RTK 四、实车调试4.1 编写启动4.2 修改传感器外参4.3 修改车身参数4.4 实车调试 本文介绍了 Autoware.universe 在实车上的部署&#xff0c;本系列其他文章…

《Web安全基础》04. 文件上传漏洞

web 1&#xff1a;文件上传漏洞2&#xff1a;WAF 绕过2.1&#xff1a;数据溢出2.2&#xff1a;符号变异2.3&#xff1a;数据截断2.4&#xff1a;重复数据 本系列侧重方法论&#xff0c;各工具只是实现目标的载体。 命令与工具只做简单介绍&#xff0c;其使用另见《安全工具录》…

2023京东口腔护理赛道行业数据分析(京东销售数据分析)

近年来&#xff0c;口腔护理逐渐成为年轻人重视的健康领域&#xff0c;从口腔护理整体市场来看&#xff0c;牙膏和牙刷等基础口腔护理产品仍占据主导地位。不过&#xff0c;随着口腔护理市场逐步朝向精致化、专业化、多元化等方向发展&#xff0c;不少新兴口腔护理产品受到消费…

C++学习|CUDA内存管理代码实例

前言&#xff1a;之前介绍了CUDA入门知识&#xff0c;对CUDA编程有了一个基本了解&#xff0c;但是实际写起来还是遇到很多问题&#xff0c;例如cpp文件该怎么调用cuda文件、cpu和gpu之间内存数据怎么交换、如何编写.cu和.cuh文件之类的。本篇文章将会以一个实现向量相加的代码…

【数据结构】二叉数的存储与基本操作的实现

文章目录 &#x1f340;二叉树的存储&#x1f333;二叉树的基本操作&#x1f431;‍&#x1f464;二叉树的创建&#x1f431;‍&#x1f453;二叉树的遍历&#x1f3a1;前中后序遍历&#x1f4cc;前序遍历&#x1f4cc;中序遍历&#x1f4cc;后续遍历 &#x1f6eb;层序遍历&am…

什么是Python爬虫分布式架构,可能遇到哪些问题,如何解决

目录 什么是Python爬虫分布式架构 1. 调度中心&#xff08;Scheduler&#xff09;&#xff1a; 2. 爬虫节点&#xff08;Crawler Node&#xff09;&#xff1a; 3. 数据存储&#xff08;Data Storage&#xff09;&#xff1a; 4. 反爬虫处理&#xff08;Anti-Scraping&…

2023-08-30力扣每日一题

链接&#xff1a; 1654. 到家的最少跳跃次数 题意&#xff1a; 从0出发&#xff0c;到X的最少步数 它可以 往前 跳恰好 a 个位置&#xff08;即往右跳&#xff09;。它可以 往后 跳恰好 b 个位置&#xff08;即往左跳&#xff09;。它不能 连续 往后跳 2 次。它不能跳到任何…

2023新版医保目录明细(药品查询)

查询医保目录的主要目的是为了了解医保政策对于特定医疗服务、药品和医疗器械的覆盖范围和支付标准。大众可以通过查看医保目录可以确定哪些药品可以被医保支付以及报销的比例和限额&#xff1b;医药从业者可通过查看医保目录可以即使了解医保政策的变化&#xff0c;便于做出相…

Window10 安装 Lua

1、下载地址&#xff1a;https://luabinaries.sourceforge.net/download.html 2、下载 3、解压后共有4个文件&#xff0c;这里我把这几个文件放到如下目录 D:\Program Files\lua-5.4.2\bin 4、定义环境变量 5、打开 powershell&#xff0c;运行 lua54 -v PS C:\Windows\syste…

qt设计界面

widget.h #ifndef WIDGET_H #define WIDGET_H //防止文件重复包含#include <QWidget> //QWidget类所在的头文件&#xff0c;父类头文件 #include<QIcon> #include<QPushButton> …

Facebook Shops免费面世 Facebook与Instagram携手并肩

图片来源&#xff1a;SaleSmartly官网 近年来网上购物剧增&#xff0c;电子商务越趋重要&#xff0c;Facebook 和Instragram乘势推出Facebook Shops&#xff0c;免费让零售商户在全球最多使用者的两个社交平台创建线上商户&#xff0c;展示产品和进行交易&#xff0c;助零售业走…

DataTable扩展 列转行方法(2*2矩阵转换)

源数据 如图所示 // <summary>/// DataTable扩展 列转行方法&#xff08;2*2矩阵转换&#xff09;/// </summary>/// <param name"dtSource">数据源</param>/// <param name"columnFilter">逗号分隔 如SDateTime,PM25,PM10…

SmokePing网络延迟和丢包监测工具

SmokePing是一种网络延迟和丢包监测工具&#xff0c;其监控原理如下&#xff1a; 监测目标选择&#xff1a;SmokePing通过配置文件&#xff08;Targets&#xff09;定义了要监测的目标&#xff0c;可以是主机、路由器、服务器或其他网络设备。每个目标都有一个唯一的名称和IP地…

9个实用的交互设计软件,Get更简单的原型制作方式!

好用的原型图软件不仅可以快速可视化产品经理的想法&#xff0c;提高沟通效率&#xff0c;还可以加快测试进度&#xff0c;打造更真实的用户体验。今天本文为大家整理了9个好用的原型图工具&#xff0c;一起来看看吧&#xff01; 1、即时设计 在设计场景中&#xff0c;即时设…

基于MyBatis注解的学生管理程序--mybatis注解开发的练手项目

基于MyBatis注解的学生管理程序 需求&#xff1a;完成基于MyBatis注解的学生管理程序&#xff0c;能够用MyBatis注解实现查询操作、实现修改操作、实现一对多查询 &#xff08;1&#xff09;MyBatis注解开发实现查询操作。根据表1和表2在数据库分别创建一个学生表tb_student和…

【CicadaPlayer】getPlayerBufferDuration分析

https://github.com/alibaba/CicadaPlayer/blob/release/0.4.4/mediaPlayer/SuperMediaPlayer.cpp核心关键函数int64_t SuperMediaPlayer::getPlayerBufferDuration(bool gotMax, bool internal)17个地方出现: getPlayerBufferDuration的durations 数组 分别 对音频、视频、字…

登录页面设计的7个小细节,帮你提升用户体验

移动 APP 登录页面的设计直接影响到用户体验&#xff0c;从而决定 APP 的成败。我们应该设计出令用户兴奋而不是沮丧的登录界面。下面就让我和你分享几个提升登录页面 UX 设计的技巧: 如果用户必须登录才能使用服务&#xff0c;那么需要仔细考虑登录表单。 在构建登录页面设计…

简单数学题:找出最大的可达成数字

来看一道简单的数学题&#xff1a;力扣2769. 找出最大的可达成数字 题目描述的花里胡哨&#xff0c;天花乱坠&#xff0c;但这道题目非常简单。我们最多执行t次操作&#xff0c;只需每次操作都让x-1&#xff0c;让num1&#xff0c;执行t次操作后&#xff0c;x就变为xt&#xff…

YAML基本介绍和使用语法

YAML详解及使用方法 一、基本介绍二、数据类型2.1 纯量(scalars)/标量2.1.1 字符串2.1.2 保留换行(Newlines preserved)2.1.3 布尔值&#xff08;Boolean)2.1.4 整数&#xff08;Integer&#xff09;2.1.5 浮点数&#xff08;Floating Point&#xff09;2.1.6 空&#xff08;Nu…