1 理论基础
1.1 模拟退火算法基本原理
1.2 TSP问题介绍
2 案例背景
2.1 问题描述
2.2 解题思路及步骤
3 MATLAB程序实现
3.1 计算距离矩阵
function D=Distanse(a)
%% 计算两两城市之间的距离
%输入 a 各城市的位置坐标
%输出 D 两两城市之间的距离
row=size(a,1);
D=zeros(row,row);
for i=1:row
for j=i+1:row
D(i,j)=((a(i,1)-a(j,1))^2+(a(i,2)-a(j,2))^2)^0.5;
D(j,i)=D(i,j);
end
end
3.2 画路线轨迹图
function DrawPath(Chrom,X)
%% 画路径函数
%输入
% Chrom 待画路径
% X 各城市坐标位置
R=[Chrom(1,:) Chrom(1,1)]; %一个随机解(个体)
figure;
hold on
plot(X(:,1),X(:,2),'o','color',[0.5,0.5,0.5])
plot(X(Chrom(1,1),1),X(Chrom(1,1),2),'rv','MarkerSize',20)
for i=1:size(X,1)
text(X(i,1)+0.05,X(i,2)+0.05,num2str(i),'color',[1,0,0]);
end
A=X(R,:);
row=size(A,1);
for i=2:row
[arrowx,arrowy] = dsxy2figxy(gca,A(i-1:i,1),A(i-1:i,2));%坐标转换
annotation('textarrow',arrowx,arrowy,'HeadWidth',8,'color',[0,0,1]);
end
hold off
xlabel('横坐标')
ylabel('纵坐标')
title('轨迹图')
box on
3.3 输出路径函数
function p=OutputPath(R)
%% 输出路径函数
%输入:R 路径
R=[R,R(1)];
N=length(R);
p=num2str(R(1));
for i=2:N
p=[p,'—>',num2str(R(i))];
end
disp(p)
3.4 可行解路线长度函数
function len=PathLength(D,Chrom)
%% 计算各个体的路径长度
% 输入:
% D 两两城市之间的距离
% Chrom 个体的轨迹
[row,col]=size(D);
NIND=size(Chrom,1);
len=zeros(NIND,1);
for i=1:NIND
p=[Chrom(i,:) Chrom(i,1)];
i1=p(1:end-1);
i2=p(2:end);
len(i,1)=sum(D((i1-1)*col+i2));
end
3.5 生成新解
function S2=NewAnswer(S1)
%% 输入
% S1:当前解
%% 输出
% S2:新解
N=length(S1);
S2=S1;
a=round(rand(1,2)*(N-1)+1); %产生两个随机位置 用来交换
W=S2(a(1));
S2(a(1))=S2(a(2));
S2(a(2))=W; %得到一个新路线
3.6Metropolis准则函数
function [S,R]=Metropolis(S1,S2,D,T)
%% 输入
% S1: 当前解
% S2: 新解
% D: 距离矩阵(两两城市的之间的距离)
% T: 当前温度
%% 输出
% S: 下一个当前解
% R: 下一个当前解的路线距离
%%
R1=PathLength(D,S1); %计算路线长度
N=length(S1); %得到城市的个数
R2=PathLength(D,S2); %计算路线长度
dC=R2-R1; %计算能力之差
if dC<0 %如果能力降低 接受新路线
S=S2;
R=R2;
elseif exp(-dC/T)>=rand %以exp(-dC/T)概率接受新路线
S=S2;
R=R2;
else %不接受新路线
S=S1;
R=R1;
end
3.7 主函数
主函数代码如下:
clc;
clear;
close all;
%%
tic
T0=1000; % 初始温度
Tend=1e-3; % 终止温度
L=500; % 各温度下的迭代次数(链长)
q=0.9; %降温速率
%% 加载数据
load CityPosition1;
%%
D=Distanse(X); %计算距离矩阵
N=size(D,1); %城市的个数
%% 初始解
S1=randperm(N); %随机产生一个初始路线
%% 画出随机解的路径图
DrawPath(S1,X)
pause(0.0001)
%% 输出随机解的路径和总距离
disp('初始种群中的一个随机值:')
OutputPath(S1);
Rlength=PathLength(D,S1);
disp(['总距离:',num2str(Rlength)]);
%% 计算迭代的次数Time
Time=ceil(double(solve(['1000*(0.9)^x=',num2str(Tend)])));
count=0; %迭代计数
Obj=zeros(Time,1); %目标值矩阵初始化
track=zeros(Time,N); %每代的最优路线矩阵初始化
%% 迭代
while T0>Tend
count=count+1; %更新迭代次数
temp=zeros(L,N+1);
for k=1:L
%% 产生新解
S2=NewAnswer(S1);
%% Metropolis法则判断是否接受新解
[S1,R]=Metropolis(S1,S2,D,T0); %Metropolis 抽样算法
temp(k,:)=[S1 R]; %记录下一路线的及其路程
end
%% 记录每次迭代过程的最优路线
[d0,index]=min(temp(:,end)); %找出当前温度下最优路线
if count==1 || d0<Obj(count-1)
Obj(count)=d0; %如果当前温度下最优路程小于上一路程则记录当前路程
else
Obj(count)=Obj(count-1);%如果当前温度下最优路程大于上一路程则记录上一路程
end
track(count,:)=temp(index,1:end-1); %记录当前温度的最优路线
T0=q*T0; %降温
fprintf(1,'%d\n',count) %输出当前迭代次数
end
%% 优化过程迭代图
figure
plot(1:count,Obj)
xlabel('迭代次数')
ylabel('距离')
title('优化过程')
%% 最优解的路径图
DrawPath(track(end,:),X)
%% 输出最优解的路线和总距离
disp('最优解:')
S=track(end,:);
p=OutputPath(S);
disp(['总距离:',num2str(PathLength(D,S))]);
disp('-------------------------------------------------------------')
toc
4 结果分析
最优解为:
9—>11—>1—>8—>13—>7—>12—>6—>5—>4—>3—>14—>2—>10—>9
总距离:29.6889
X=rand(N,2)*10;
即可得到如下结果:优化前的轨迹如图5所示,优化后的轨迹如图6所示,优化迭代过程如图7所示。
初始种群中的个随机解:
22—>31—>50—>37—>11—>3—>23—>46—>19—>28—>48—>1—>47—>12—>45—>42—>40—>39—>33—>34—>18—>41—>25—>13—>49—>27—>36—>29—>16—>6—>2—>14—>21—>5—>24—>32—>38—>43—>7—>4—>26—>8—>9—>20—>44—>35—>15—>30—>17—>10—>22
总距离:271.7719
最优解:
33—>45—>13—>50—>20—>26—>25—>15—>2—>17—>18—>8—>41—>3—>6—>34—>38—>47—>14—>42—>44—>7—>36—>22—>39—>4—>37—>46—>1—>5—>30—>43—>27—>31—>32—>21—>9—>11—>29—>23—>40—>49—>28—>19—>48—>12—>35—>16—>24—>10—>33
总距离:71.3071