JDK SPI、Spring SPI、Dubbo SPI三种机制的细节与演化
- SPI机制
- SPI机制的应用
- JDBC中加载驱动
- Spring SPI
- Dubbo SPI
- SPI深入理解
- API与SPI的区别
- ServiceLoader
- JDK SPI、Spring SPI、Dubbo SPI综合对比
SPI机制
Java SPI(Service Provider Interface)
是JDK提供的一种服务发现机制,用于在运行时动态加载和扩展应用程序中的服务提供者。
SPI 的本质是将接口实现类的全限定名配置在文件中,并由服务加载器读取配置文件,加载实现类。这样可以在运行时,动态为接口替换实现类。正因此特性,我们可以很容易的通过 SPI 机制为我们的程序提供拓展功能。
【举例】 在Java中定义好接口
java.sql.Driver
,然后直接使用,不用管实现类。具体的实现类,是通过SPI机制来加载的。驱动有JDBC、ODBC等等,我们导入了哪一个驱动Jar包,这个Jar包的META-INF/services目录中都会有java.sql.Driver
文件,里面存的是当前这个Jar包里面实现接口java.sql.Driver
的实现类的全限定名称。
当服务的提供者提供了一种接口的实现之后,需要在classpath下的META-INF/services/
目录里创建一个以服务接口命名的文件,这个文件里的内容就是这个接口的具体的实现类。当其他的程序需要这个服务的时候,就可以通过查找这个jar包(一般都是以jar包做依赖)的META-INF/services/
中的配置文件,配置文件中有接口的具体实现类名,可以根据这个类名进行加载实例化,就可以使用该服务了。
JDK中查找服务的实现的工具类是:java.util.ServiceLoader
。
SPI机制的应用
JDBC中加载驱动
1、JDBC接口定义
首先在java中定义了接口java.sql.Driver
,并没有具体的实现,具体的实现都是由不同厂商来提供的。
2、mysql实现
在mysql的jar包mysql-connector-java-6.0.6.jar
中,可以找到META-INF/services
目录,该目录下会有一个名字为java.sql.Driver
的文件,文件内容是com.mysql.cj.jdbc.Driver
,这里面的内容就是针对Java中定义的接口的实现。
3、postgresql实现
同样在postgresql
的jar包postgresql-42.0.0.jar
中,也可以找到同样的配置文件,文件内容是org.postgresql.Driver
,这是postgresql
对Java的java.sql.Driver
的实现。
4、源码实现
关于驱动的查找其实都在DriverManager
中,DriverManager
是Java中的实现,用来获取数据库连接,在DriverManager
中有一个静态代码块如下:
static {
loadInitialDrivers();
println("JDBC DriverManager initialized");
}
可以看到是加载实例化驱动的,接着看loadInitialDrivers
方法:
private static void loadInitialDrivers() {
String drivers;
try {
drivers = AccessController.doPrivileged(new PrivilegedAction<String>() {
public String run() {
return System.getProperty("jdbc.drivers");
}
});
} catch (Exception ex) {
drivers = null;
}
AccessController.doPrivileged(new PrivilegedAction<Void>() {
public Void run() {
//使用SPI的ServiceLoader来加载接口的实现
ServiceLoader<Driver> loadedDrivers = ServiceLoader.load(Driver.class);
Iterator<Driver> driversIterator = loadedDrivers.iterator();
try{
while(driversIterator.hasNext()) {
driversIterator.next();
}
} catch(Throwable t) {
// Do nothing
}
return null;
}
});
println("DriverManager.initialize: jdbc.drivers = " + drivers);
if (drivers == null || drivers.equals("")) {
return;
}
String[] driversList = drivers.split(":");
println("number of Drivers:" + driversList.length);
for (String aDriver : driversList) {
try {
println("DriverManager.Initialize: loading " + aDriver);
Class.forName(aDriver, true,
ClassLoader.getSystemClassLoader());
} catch (Exception ex) {
println("DriverManager.Initialize: load failed: " + ex);
}
}
}
上面的代码主要步骤是:
1、从系统变量中获取有关驱动的定义。
2、使用SPI来获取驱动的实现。
3、遍历使用SPI获取到的具体实现,实例化各个实现类。
4、根据第一步获取到的驱动列表来实例化具体实现类。
主要关注2,3步,这两步是SPI的用法,首先看第二步,使用SPI来获取驱动的实现,对应的代码是:
ServiceLoader<Driver> loadedDrivers = ServiceLoader.load(Driver.class);
这里没有去META-INF/services
目录下查找配置文件,也没有加载具体实现类,做的事情就是封装了我们的接口类型和类加载器,并初始化了一个迭代器。接着看第三步,遍历使用SPI获取到的具体实现,实例化各个实现类,对应的代码如下:
//获取迭代器
Iterator<Driver> driversIterator = loadedDrivers.iterator();
//遍历所有的驱动实现
while(driversIterator.hasNext()) {
driversIterator.next();
}
在遍历的时候,首先调用driversIterator.hasNext()
方法,这里会搜索classpath
下以及jar包中所有的META-INF/services
目录下的java.sql.Driver
文件,并找到文件中的实现类的名字,此时并没有实例化具体的实现类(ServiceLoader
具体的源码实现在下面)。
然后是调用driversIterator.next();
方法,此时就会根据驱动名字具体实例化各个实现类了。现在驱动就被找到并实例化了。
Spring SPI
在springboot
的自动装配过程中,最终会加载META-INF/spring.factories
文件,而加载的过程是由SpringFactoriesLoader
加载的。从CLASSPATH
下的每个Jar包中搜寻所有META-INF/spring.factories
配置文件,然后将解析properties
文件,找到指定名称的配置后返回。需要注意的是,其实这里不仅仅是会去ClassPath
路径下查找,会扫描所有路径下的Jar包,只不过这个文件只会在Classpath
下的jar包中。
public static final String FACTORIES_RESOURCE_LOCATION = "META-INF/spring.factories";
// spring.factories文件的格式为:key=value1,value2,value3
// 从所有的jar包中找到META-INF/spring.factories文件
// 然后从文件中解析出key=factoryClass类名称的所有value值
public static List<String> loadFactoryNames(Class<?> factoryClass, ClassLoader classLoader) {
String factoryClassName = factoryClass.getName();
// 取得资源文件的URL
Enumeration<URL> urls = (classLoader != null ? classLoader.getResources(FACTORIES_RESOURCE_LOCATION) : ClassLoader.getSystemResources(FACTORIES_RESOURCE_LOCATION));
List<String> result = new ArrayList<String>();
// 遍历所有的URL
while (urls.hasMoreElements()) {
URL url = urls.nextElement();
// 根据资源文件URL解析properties文件,得到对应的一组@Configuration类
Properties properties = PropertiesLoaderUtils.loadProperties(new UrlResource(url));
String factoryClassNames = properties.getProperty(factoryClassName);
// 组装数据,并返回
result.addAll(Arrays.asList(StringUtils.commaDelimitedListToStringArray(factoryClassNames)));
}
return result;
}
下面是一段Spring Boot
中 spring.factories
的配置
# Logging Systems
org.springframework.boot.logging.LoggingSystemFactory=\
org.springframework.boot.logging.logback.LogbackLoggingSystem.Factory,\
org.springframework.boot.logging.log4j2.Log4J2LoggingSystem.Factory,\
org.springframework.boot.logging.java.JavaLoggingSystem.Factory
# PropertySource Loaders
org.springframework.boot.env.PropertySourceLoader=\
org.springframework.boot.env.PropertiesPropertySourceLoader,\
org.springframework.boot.env.YamlPropertySourceLoader
# ConfigData Location Resolvers
org.springframework.boot.context.config.ConfigDataLocationResolver=\
org.springframework.boot.context.config.ConfigTreeConfigDataLocationResolver,\
org.springframework.boot.context.config.StandardConfigDataLocationResolver
Spring SPI
中,将所有的配置放到一个固定的文件中,省去了配置一大堆文件的麻烦。至于多个接口的扩展配置,是用一个文件好,还是每个单独一个文件好这个,这个问题就见仁见智了。
Spring的SPI
虽然属于spring-framework(core)
,但是目前主要用在spring boot
中……
Spring SPI
也是支持ClassPath
中存在多个spring.factories
文件的,加载时会按照classpath
的顺序依次加载这些spring.factories
文件,添加到一个ArrayList
中。由于没有别名,所以也没有去重的概念,有多少就添加多少。
但由于Spring
的SPI
主要用在 Spring Boot
中,而Spring Boot
中的ClassLoader
会优先加载项目中的文件,而不是依赖包中的文件。所以如果在你的项目中定义个spring.factories
文件,那么你项目中的文件会被第一个加载,得到的Factories
中,项目中spring.factories
里配置的那个实现类也会排在第一个。
如果我们要扩展某个接口的话,只需要在你的项目里新建一个META-INF/spring.factories
文件,只添加你要的那个配置。
Dubbo SPI
Dubbo
就是通过SPI
机制加载所有的组件。不过,Dubbo
并未使用 Java 原生的SPI
机制,而是对其进行了增强,使其能够更好的满足需求。在Dubbo
中,SPI
是一个非常重要的模块。基于SPI
,我们可以很容易的对Dubbo
进行拓展。
Dubbo
中实现了一套新的SPI 机制
,功能更强大,也更复杂一些。相关逻辑被封装在了ExtensionLoader
类中,通过ExtensionLoader
,我们可以加载指定的实现类。Dubbo SPI
所需的配置文件需放置在META-INF/dubbo
路径下,配置内容如下(以下demo来自dubbo官方文档):
optimusPrime = org.apache.spi.OptimusPrime
bumblebee = org.apache.spi.Bumblebee
与Java SPI
实现类配置不同,Dubbo SPI
是通过键值对的方式进行配置,这样我们可以按需加载指定的实现类。另外在使用时还需要在接口上标注 @SPI
注解。下面来演示Dubbo SPI
的用法:
@SPI
public interface Robot {
void sayHello();
}
public class OptimusPrime implements Robot {
@Override
public void sayHello() {
System.out.println("Hello, I am Optimus Prime.");
}
}
public class Bumblebee implements Robot {
@Override
public void sayHello() {
System.out.println("Hello, I am Bumblebee.");
}
}
public class DubboSPITest {
@Test
public void sayHello() throws Exception {
ExtensionLoader<Robot> extensionLoader =
ExtensionLoader.getExtensionLoader(Robot.class);
Robot optimusPrime = extensionLoader.getExtension("optimusPrime");
optimusPrime.sayHello();
Robot bumblebee = extensionLoader.getExtension("bumblebee");
bumblebee.sayHello();
}
}
Dubbo SPI
和JDK SPI
最大的区别就在于支持“别名”,可以通过某个扩展点的别名来获取固定的扩展点。就像上面的例子中,我可以获取Robot
多个SPI
实现中别名为“optimusPrime”
的实现,也可以获取别名为“bumblebee”
的实现,这个功能非常有用!
通过@SPI
注解的value
属性,还可以默认一个“别名”的实现。比如在Dubbo
中,默认的是Dubbo
私有协议:dubbo protocol - dubbo://
来看看Dubbo
中协议的接口:
@SPI("dubbo")
public interface Protocol {
......
}
在Protocol
接口上,增加了一个@SPI
注解,而注解的value
值为Dubbo
,通过SPI
获取实现时就会获取 Protocol SPI
配置中别名为dubbo
的那个实现,com.alibaba.dubbo.rpc.Protocol
文件如下:
filter=com.alibaba.dubbo.rpc.protocol.ProtocolFilterWrapper
listener=com.alibaba.dubbo.rpc.protocol.ProtocolListenerWrapper
mock=com.alibaba.dubbo.rpc.support.MockProtocol
dubbo=com.alibaba.dubbo.rpc.protocol.dubbo.DubboProtocol
injvm=com.alibaba.dubbo.rpc.protocol.injvm.InjvmProtocol
rmi=com.alibaba.dubbo.rpc.protocol.rmi.RmiProtocol
hessian=com.alibaba.dubbo.rpc.protocol.hessian.HessianProtocol
com.alibaba.dubbo.rpc.protocol.http.HttpProtocol
com.alibaba.dubbo.rpc.protocol.webservice.WebServiceProtocol
thrift=com.alibaba.dubbo.rpc.protocol.thrift.ThriftProtocol
memcached=com.alibaba.dubbo.rpc.protocol.memcached.MemcachedProtocol
redis=com.alibaba.dubbo.rpc.protocol.redis.RedisProtocol
rest=com.alibaba.dubbo.rpc.protocol.rest.RestProtocol
registry=com.alibaba.dubbo.registry.integration.RegistryProtocol
qos=com.alibaba.dubbo.qos.protocol.QosProtocolWrapper
然后只需要通过getDefaultExtension
,就可以获取到@SPI
注解上value
对应的那个扩展实现了。
SPI深入理解
API与SPI的区别
API(Application Programming Interface)
和SPI(Service Provider Interface)
是两种不同的概念,API是软件组件之间的接口规范,用于定义交互方式和通信协议,以便于开发者使用和集成组件。而SPI是一种服务发现机制,用于动态加载和扩展应用程序中的服务提供者,允许通过插件式的方式添加和替换功能实现。API是软件开发中常见的概念,而SPI则是特定于服务发现和扩展的机制。
API(应用程序编程接口):
API是一组定义了软件组件之间交互方式和通信协议的接口。
API提供了一系列的函数、方法、类、协议等,用于让开发者能够与某个软件库、框架或平台进行交互。
API定义了外部组件与提供者之间的约定和规范,以便于开发者可以使用和集成这些组件来实现特定的功能。
API通常由供应商或平台提供,并且在软件开发中广泛使用,以简化开发者的工作,提供特定功能和服务的访问途径。
SPI(服务提供者接口):
SPI是一种服务发现机制,用于在运行时动态加载和扩展应用程序中的服务提供者。
SPI允许开发者定义服务接口,然后通过服务提供者实现该接口,并在运行时通过SPI机制动态发现和加载实现。
SPI通过在类路径下的META-INF/services目录中的配置文件中指定实现类的方式,使得应用程序可以通过插件式的方式添加、替换和扩展功能。
SPI提供了一种松耦合的方式,允许应用程序在不修改源代码的情况下,通过添加新的服务提供者实现来扩展功能。
ServiceLoader
//ServiceLoader实现了Iterable接口,可以遍历所有的服务实现者
public final class ServiceLoader<S>
implements Iterable<S>
{
//查找配置文件的目录
private static final String PREFIX = "META-INF/services/";
//表示要被加载的服务的类或接口
private final Class<S> service;
//这个ClassLoader用来定位,加载,实例化服务提供者
private final ClassLoader loader;
// 访问控制上下文
private final AccessControlContext acc;
// 缓存已经被实例化的服务提供者,按照实例化的顺序存储
private LinkedHashMap<String,S> providers = new LinkedHashMap<>();
// 迭代器
private LazyIterator lookupIterator;
//重新加载,就相当于重新创建ServiceLoader了,用于新的服务提供者安装到正在运行的Java虚拟机中的情况。
public void reload() {
//清空缓存中所有已实例化的服务提供者
providers.clear();
//新建一个迭代器,该迭代器会从头查找和实例化服务提供者
lookupIterator = new LazyIterator(service, loader);
}
//私有构造器
//使用指定的类加载器和服务创建服务加载器
//如果没有指定类加载器,使用系统类加载器,就是应用类加载器。
private ServiceLoader(Class<S> svc, ClassLoader cl) {
service = Objects.requireNonNull(svc, "Service interface cannot be null");
loader = (cl == null) ? ClassLoader.getSystemClassLoader() : cl;
acc = (System.getSecurityManager() != null) ? AccessController.getContext() : null;
reload();
}
//解析失败处理的方法
private static void fail(Class<?> service, String msg, Throwable cause)
throws ServiceConfigurationError
{
throw new ServiceConfigurationError(service.getName() + ": " + msg,
cause);
}
private static void fail(Class<?> service, String msg)
throws ServiceConfigurationError
{
throw new ServiceConfigurationError(service.getName() + ": " + msg);
}
private static void fail(Class<?> service, URL u, int line, String msg)
throws ServiceConfigurationError
{
fail(service, u + ":" + line + ": " + msg);
}
//解析服务提供者配置文件中的一行
//首先去掉注释校验,然后保存
//返回下一行行号
//重复的配置项和已经被实例化的配置项不会被保存
private int parseLine(Class<?> service, URL u, BufferedReader r, int lc,
List<String> names)
throws IOException, ServiceConfigurationError
{
//读取一行
String ln = r.readLine();
if (ln == null) {
return -1;
}
//#号代表注释行
int ci = ln.indexOf('#');
if (ci >= 0) ln = ln.substring(0, ci);
ln = ln.trim();
int n = ln.length();
if (n != 0) {
if ((ln.indexOf(' ') >= 0) || (ln.indexOf('\t') >= 0))
fail(service, u, lc, "Illegal configuration-file syntax");
int cp = ln.codePointAt(0);
if (!Character.isJavaIdentifierStart(cp))
fail(service, u, lc, "Illegal provider-class name: " + ln);
for (int i = Character.charCount(cp); i < n; i += Character.charCount(cp)) {
cp = ln.codePointAt(i);
if (!Character.isJavaIdentifierPart(cp) && (cp != '.'))
fail(service, u, lc, "Illegal provider-class name: " + ln);
}
if (!providers.containsKey(ln) && !names.contains(ln))
names.add(ln);
}
return lc + 1;
}
//解析配置文件,解析指定的url配置文件
//使用parseLine方法进行解析,未被实例化的服务提供者会被保存到缓存中去
private Iterator<String> parse(Class<?> service, URL u)
throws ServiceConfigurationError
{
InputStream in = null;
BufferedReader r = null;
ArrayList<String> names = new ArrayList<>();
try {
in = u.openStream();
r = new BufferedReader(new InputStreamReader(in, "utf-8"));
int lc = 1;
while ((lc = parseLine(service, u, r, lc, names)) >= 0);
}
return names.iterator();
}
//服务提供者查找的迭代器
private class LazyIterator
implements Iterator<S>
{
Class<S> service;//服务提供者接口
ClassLoader loader;//类加载器
Enumeration<URL> configs = null;//保存实现类的url
Iterator<String> pending = null;//保存实现类的全名
String nextName = null;//迭代器中下一个实现类的全名
private LazyIterator(Class<S> service, ClassLoader loader) {
this.service = service;
this.loader = loader;
}
private boolean hasNextService() {
if (nextName != null) {
return true;
}
if (configs == null) {
try {
String fullName = PREFIX + service.getName();
if (loader == null)
configs = ClassLoader.getSystemResources(fullName);
else
configs = loader.getResources(fullName);
}
}
while ((pending == null) || !pending.hasNext()) {
if (!configs.hasMoreElements()) {
return false;
}
pending = parse(service, configs.nextElement());
}
nextName = pending.next();
return true;
}
private S nextService() {
if (!hasNextService())
throw new NoSuchElementException();
String cn = nextName;
nextName = null;
Class<?> c = null;
try {
c = Class.forName(cn, false, loader);
}
if (!service.isAssignableFrom(c)) {
fail(service, "Provider " + cn + " not a subtype");
}
try {
S p = service.cast(c.newInstance());
providers.put(cn, p);
return p;
}
}
public boolean hasNext() {
if (acc == null) {
return hasNextService();
} else {
PrivilegedAction<Boolean> action = new PrivilegedAction<Boolean>() {
public Boolean run() { return hasNextService(); }
};
return AccessController.doPrivileged(action, acc);
}
}
public S next() {
if (acc == null) {
return nextService();
} else {
PrivilegedAction<S> action = new PrivilegedAction<S>() {
public S run() { return nextService(); }
};
return AccessController.doPrivileged(action, acc);
}
}
public void remove() {
throw new UnsupportedOperationException();
}
}
//获取迭代器
//返回遍历服务提供者的迭代器
//以懒加载的方式加载可用的服务提供者
//懒加载的实现是:解析配置文件和实例化服务提供者的工作由迭代器本身完成
public Iterator<S> iterator() {
return new Iterator<S>() {
//按照实例化顺序返回已经缓存的服务提供者实例
Iterator<Map.Entry<String,S>> knownProviders
= providers.entrySet().iterator();
public boolean hasNext() {
if (knownProviders.hasNext())
return true;
return lookupIterator.hasNext();
}
public S next() {
if (knownProviders.hasNext())
return knownProviders.next().getValue();
return lookupIterator.next();
}
public void remove() {
throw new UnsupportedOperationException();
}
};
}
//为指定的服务使用指定的类加载器来创建一个ServiceLoader
public static <S> ServiceLoader<S> load(Class<S> service,
ClassLoader loader)
{
return new ServiceLoader<>(service, loader);
}
//使用线程上下文的类加载器来创建ServiceLoader
public static <S> ServiceLoader<S> load(Class<S> service) {
ClassLoader cl = Thread.currentThread().getContextClassLoader();
return ServiceLoader.load(service, cl);
}
//使用扩展类加载器为指定的服务创建ServiceLoader
//只能找到并加载已经安装到当前Java虚拟机中的服务提供者,应用程序类路径中的服务提供者将被忽略
public static <S> ServiceLoader<S> loadInstalled(Class<S> service) {
ClassLoader cl = ClassLoader.getSystemClassLoader();
ClassLoader prev = null;
while (cl != null) {
prev = cl;
cl = cl.getParent();
}
return ServiceLoader.load(service, prev);
}
public String toString() {
return "java.util.ServiceLoader[" + service.getName() + "]";
}
}
首先,ServiceLoader
实现了Iterable
接口,所以它有迭代器的属性,这里主要都是实现了迭代器的hasNext
和next
方法。这里主要都是调用的lookupIterator
的相应hasNext
和next
方法,lookupIterator
是懒加载迭代器。
其次,LazyIterator
中的hasNext
方法,静态变量PREFIX
就是META-INF/services/
目录,这也就是为什么需要在classpath
下的META-INF/services/
目录里创建一个以服务接口命名的文件。
最后,通过反射方法Class.forName()
加载类对象,并用newInstance
方法将类实例化,并把实例化后的类缓存到providers
对象中,(LinkedHashMap<String,S>
类型)然后返回实例对象。
所以我们可以看到ServiceLoader
不是实例化以后,就去读取配置文件中的具体实现,并进行实例化。而是等到使用迭代器去遍历的时候,才会加载对应的配置文件去解析,调用hasNext方法的时候会去加载配置文件进行解析,调用next
方法的时候进行实例化并缓存。所有的配置文件只会加载一次,服务提供者也只会被实例化一次,重新加载配置文件可使用reload
方法。
JDK SPI、Spring SPI、Dubbo SPI综合对比
JDK SPI | DUBBO SPI | Spring SPI | |
---|---|---|---|
文件方式 | 每个扩展点单独一个文件 | 每个扩展点单独一个文件 | 所有的扩展点在一个文件 |
获取某个固定的实现 | 不支持,只能按顺序获取所有实现 | 有“别名”的概念,可以通过名称获取扩展点的某个固定实现,配合Dubbo SPI的注解很方便 | 不支持,只能按顺序获取所有实现。但由于Spring Boot ClassLoader会优先加载用户代码中的文件,所以可以保证用户自定义的spring.factoires文件在第一个,通过获取第一个factory的方式就可以固定获取自定义的扩展 |
其他 | 无 | 支持Dubbo内部的依赖注入,通过目录来区分Dubbo 内置SPI和外部SPI,优先加载内部,保证内部的优先级最高 | 无 |
文档完整度 | 文章 & 三方资料足够丰富 | 文档 & 三方资料足够丰富 | 文档不够丰富,但由于功能少,使用非常简单 |
IDE支持 | 无 | 无 | IDEA 完美支持,有语法提示 |