YOLOV5使用(一): docker跑通,详解TensorRT下plugin的onnx

news2025/1/11 2:49:58

yolov5的工程使用(以人员检测为案例)

使用ubuntu为案例

docker run --gpus all -it -p 6007:6006 -p 8889:8888 --name my_torch -v $(pwd):/app easonbob/my_torch1-pytorch:22.03-py3-yolov5-6.0

使用端口映射功能也就是说打开jupyter lab的指令是

http://localhost:8889/lab

当然,个人建议直接去vscode端口点击就打开jupyter lab和tensorboard比较方便

1. yolo数据格式

YOLO格式的标签文件是一个纯文本文件,每个文件名对应一张图像,每个标签文件中包含了该图像中所有检测到的目标的信息。

YOLOv5的标签格式包含了每个目标的类别和位置信息。具体来说,每个标签文件的每一行都包含了一个目标的信息,每个目标的信息由以下7个字段组成,用空格分隔:

<class> <x_center> <y_center> <width> <height> <confidence> <flag>

其中,是目标的类别,是一个整数;<x_center>和<y_center>是目标的中心点相对于图像宽度和高度的比例;和是目标的宽度和高度相对于图像宽度和高度的比例;是目标检测的置信度,用0到1之间的实数表示;是一个标志位,可以忽略。

例如,下面是一个YOLOv5格式的标签文件的示例:

0 0.456 0.678 0.123 0.234 0.9876
1 0.123 0.345 0.456 0.567 0.8765

2. 跑通人员检测(WiderPerson 数据集的案例的类别)

2.1 先看类别

# 一共是5类
0 pedestrians
1 riders
2 partially-visible persons
3 ignore regions
4 crowd

2.2 制作.yaml配置文件

先看原版 coco128.yaml文件

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: python train.py --data coco128.yaml
# parent
# ├── yolov5
# └── datasets
#     └── coco128  ← downloads here (7 MB)


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128  # dataset root dir
train: images/train2017  # train images (relative to 'path') 128 images
val: images/train2017  # val images (relative to 'path') 128 images
test:  # test images (optional)

# Classes
nc: 80  # number of classes
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
        'hair drier', 'toothbrush']  # class names


# Download script/URL (optional)
download: https://ultralytics.com/assets/coco128.zip

制作自己的person.yaml文件, 复制到data里面去

path: ../person_data  # dataset root dir
train: images/train  # train images (relative to 'path') 128 images
val: images/val  # val images (relative to 'path') 128 images
test:  # test images (optional)

# classes 
nc: 5
names: ['pedestrians', 'riders', 'partially-visible persons', 'ignore regions', 'crowd']

2.3 制作model.yaml

复制model/yolov5s.yaml文件,因为要修改类别, 改nc就行了, 简单对比下跟l, n, x, 深度和宽度不同,参数量也不同

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 5  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

2.4 使用以下命令就可以训练了

python ./train.py --data ./data/person.yaml --cfg ./models/yolov5s_person.yaml --weights ./weights/yolov5s.pt --batch-size 2 --epochs 1 --workers 0 --name s_121 --project yolo_person_s

解释
python: 运行命令的 Python 解释器。
./train.py: yolov5 提供的训练脚本,用于训练目标检测模型。
–data ./data/person.yaml: 数据集配置文件的路径,其中 person.yaml 是数据集的配置文件,里面包含了数据集的路径、类别等信息。
–cfg ./models/yolov5s_person.yaml: 模型配置文件的路径,其中 yolov5s_person.yaml 是 yolov5 基于 yolov5s 模型修改后的配置文件,用于适应特定的数据集和任务。
–weights ./weights/yolov5s.pt: 预训练模型权重文件的路径,其中 yolov5s.pt 是 yolov5 基于 yolov5s 模型在 COCO 数据集上预训练的权重文件。
–batch-size 2: 每个批次的图像数量,这里设置为 2。
–epochs 1: 训练的轮数,这里设置为 1,即只训练一轮。
–workers 0: 用于训练的进程数,这里设置为 0,表示不使用多进程加速训练,而是使用单进程进行训练。
–name s_121: 训练的名称,这里设置为 s_121,自动生成的文件夹在project下面,s是因为使用的是s模型,名字而已
–project yolo_person_demo: 训练项目的名称,这里设置为 yolo_person_demo。自动生成yolo_person_demo文件夹

2.5 增加合适的batch size

watch nvidia-smi这条指令可以每两秒钟查看一次显卡的显存使用率。调整合适的batch_size来满足对应的

主要是看Memory-Usage, 增加的倍数是16的倍数,A100是196好像是不记得了

Every 2.0s: nvidia-smi                                                     46f879adf741: Tue May 23 04:18:14 2023

Tue May 23 04:18:14 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.47.03    Driver Version: 510.47.03    CUDA Version: 11.6     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA A40-12Q      On   | 00000000:00:0B.0 Off |                    0 |
| N/A   N/A    P8    N/A /  N/A |      0MiB / 12288MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

2.6 结果出炉

这里只跑了一轮

AutoAnchor: 4.93 anchors/target, 0.999 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
Image sizes 640 train, 640 val
Using 0 dataloader workers
Logging results to yolo_person_demo/s_1212
Starting training for 1 epochs...

     Epoch   gpu_mem       box       obj       cls    labels  img_size
       0/0    0.512G   0.07661    0.1915   0.02485        85       640: 100%|██████████|
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 
                 all       1000      28423      0.783      0.208      0.201      0.105

1 epochs completed in 0.236 hours.
Optimizer stripped from yolo_person_demo/s_1212/weights/last.pt, 14.4MB
Optimizer stripped from yolo_person_demo/s_1212/weights/best.pt, 14.4MB

Validating yolo_person_demo/s_1212/weights/best.pt...
Fusing layers... 
YOLOv5s_person summary: 213 layers, 7023610 parameters, 0 gradients, 15.8 GFLOPs
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 
                 all       1000      28423      0.784      0.207      0.201      0.105
         pedestrians       1000      17833      0.545      0.827        0.8       0.46
              riders       1000        185          1          0    0.00518    0.00235
partially-visible persons       1000       9335      0.374      0.208      0.196     0.0584
      ignore regions       1000        409          1          0    0.00319     0.0012
               crowd       1000        661          1          0    0.00099   0.000297
Results saved to yolo_person_demo/s_1212

最后在yolov5的文件夹中生成了一个yolo_person_demo文件夹,下面是s1212文件夹下面存放着训练的结果。 这里我们设置的是s121, 这里是s1212,是因为第二次运行这个指令了,每次运行建议更改name这个参数

2.7 对训练结果进行可视化

这里使用训练好的结果

tensorboard --logdir=./yolo_person_demo

docker内部打开最简单办法, 点就完事了
在这里插入图片描述
在这里插入图片描述

2.8 模型的测试

使用detect.py脚本

python detect.py --source ./test.mp4 --weights ./yolo_person_demo/s_120/weights/best.pt --conf-thres 0.3
python detect.py --weights ./weights/yolov5s.pt --img 640 --conf 0.4 --source ./data/images/zidane.jpg --classes 0

2.9 模型的评估

使用val.py脚本

python val.py --data  ./data/person.yaml  --weights ./yolo_person_s/s_120/weights/best.pt --batch-size 12

python val.py --data ./data/yolov5s_person.yaml --weights ./weights/yolov5s.pt --batch-size 12

                   Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 
                     all       1000      28027      0.451      0.372      0.375      0.209
             pedestrians       1000      17600      0.738      0.854      0.879      0.608
                  riders       1000        185      0.546      0.492      0.522      0.256
 artially-visible-person       1000       9198      0.461      0.334      0.336      0.125
          ignore-regions       1000        391       0.36      0.132      0.116     0.0463
                   crowd       1000        653      0.152     0.0468     0.0244    0.00841

指标说明

P: 准确率(Precision),检测出的正确目标数除以检测出的总目标数。

R: 召回率(Recall),检测出的正确目标数除以标注的总目标数。

mAP@.5: Mean Average Precision(平均精度均值)在 Intersection over Union(IoU)阈值为 0.5 时的值。mAP 是一种衡量目标检测模型性能的指标,它结合了 Precision 和 Recall。在计算 mAP 时,将 Precision-Recall 曲线下方的面积进行平均。数值越接近 1,表示模型性能越好。

mAP@.5:.95: 这是在 IoU 阈值从 0.5 到 0.95 之间以 0.05 为间隔的范围内计算的 Mean Average Precision。这是一种更严格的评估方法,因为它考虑了不同 IoU 阈值下的性能。数值越接近 1,表示模型性能越好。

Yolo在pedestrians(行人)类别上表现最好,mAP达到0.879。在riders(骑手)和partially-visible-person(部分可见人)上也还不错。

crowd(拥挤场景)和ignore-regions(忽略区域)的性能较差,因为目标比较小且密集难以检测。

mAP@.5较高,说明Yolo在低阈值下的检测性能较好。mAP@.5:.95较低,在高阈值下的性能有待提高。

P和R值都不算很高,说明Yolo的检测结果里面既包含遗漏的目标(R较低),也包含误检目标(P较低)。总体来说性能尚可,但有提高的空间。

3. 模型的导出(decode plugin)

使用plugin decode来加速yolov5的解码性能

修改detect.py -> onnx -> simplify onnx -> 导出onnx

3.1 decode plugin的使用

这里使用了一个 export.patch 的代码, 修改完后yolo.py 和 export.py这两个脚本会发生变化

git am export.patch

出现以下显示运行成功了

(base) root@d9f903dab148:/app/yolov5_used# git am export.patch
Applying: Enable onnx export with decode plugin
.git/rebase-apply/patch:108: trailing whitespace.
    
.git/rebase-apply/patch:186: trailing whitespace.
    
.git/rebase-apply/patch:205: trailing whitespace.
    
warning: 3 lines add whitespace errors.

安装导出onnx所需要的包

pip3 install seaborn -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip3 install onnx-graphsurgeon -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip3 install onnx-simplifier==0.3.10 -i https://pypi.tuna.tsinghua.edu.cn/simple/
apt update
apt install -y libgl1-mesa-glx

导出自己训练好的行人检测的权重

python export.py --weights yolo_person_demo/s_120/weights/best.pt --include onnx --simplify --dynamic

3.2 以yolov5s为例子对比decode plugin更改过的onnx

导出yolov5s.onnx, 这里使用的是改过的export.py

python export.py --weights weights/yolov5s.pt --include onnx --simplify --dynamic

使用原版的export.py, 这个是直接从原版仓库里面拿的, 为了对比我去掉了–dynamic

python export_origin.py --weights weights/yolov5ss.pt --include onnx --simplify

在这里插入图片描述

3.3 export.py的改变

原版的export_onnx函数

def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
    # YOLOv5 ONNX export
    try:
        check_requirements(('onnx',))
        import onnx

        LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
        f = file.with_suffix('.onnx')

        torch.onnx.export(
            model,
            im,
            f,
            verbose=False,
            opset_version=opset,
            training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
            do_constant_folding=not train,
            input_names=['images'],
            output_names=['output'],
            dynamic_axes={
                'images': {
                    0: 'batch',
                    2: 'height',
                    3: 'width'},  # shape(1,3,640,640)
                'output': {
                    0: 'batch',
                    1: 'anchors'}  # shape(1,25200,85)
            } if dynamic else None)

        # Checks
        model_onnx = onnx.load(f)  # load onnx model
        onnx.checker.check_model(model_onnx)  # check onnx model

        # Metadata
        d = {'stride': int(max(model.stride)), 'names': model.names}
        for k, v in d.items():
            meta = model_onnx.metadata_props.add()
            meta.key, meta.value = k, str(v)
        onnx.save(model_onnx, f)

        # Simplify
        if simplify:
            try:
                check_requirements(('onnx-simplifier',))
                import onnxsim

                LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
                model_onnx, check = onnxsim.simplify(model_onnx,
                                                     dynamic_input_shape=dynamic,
                                                     input_shapes={'images': list(im.shape)} if dynamic else None)
                assert check, 'assert check failed'
                onnx.save(model_onnx, f)
            except Exception as e:
                LOGGER.info(f'{prefix} simplifier failure: {e}')
        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
        return f
    except Exception as e:
        LOGGER.info(f'{prefix} export failure: {e}')

更改过的export_onnx函数

def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
    # YOLOv5 ONNX export
    # try:
    check_requirements(('onnx',))
    import onnx

    LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
    f = file.with_suffix('.onnx')
    print(train)
    torch.onnx.export(
        model,
        im,
        f,
        verbose=False,
        opset_version=opset,
        training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
        do_constant_folding=not train,
        input_names=['images'],
        output_names=['p3', 'p4', 'p5'],
        dynamic_axes={
            'images': {
                0: 'batch',
                2: 'height',
                3: 'width'},  # shape(1,3,640,640)
            'p3': {
                0: 'batch',
                2: 'height',
                3: 'width'},  # shape(1,25200,4)
            'p4': {
                0: 'batch',
                2: 'height',
                3: 'width'},
            'p5': {
                0: 'batch',
                2: 'height',
                3: 'width'}
        } if dynamic else None)

    # Checks
    model_onnx = onnx.load(f)  # load onnx model
    onnx.checker.check_model(model_onnx)  # check onnx model
    
    # Simplify
    if simplify:
        # try:
        check_requirements(('onnx-simplifier',))
        import onnxsim

        LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
        model_onnx, check = onnxsim.simplify(model_onnx,
                                                dynamic_input_shape=dynamic,
                                                input_shapes={'images': list(im.shape)} if dynamic else None)
        assert check, 'assert check failed'
        onnx.save(model_onnx, f)
        # except Exception as e:
        #     LOGGER.info(f'{prefix} simplifier failure: {e}')

    # add yolov5_decoding:
    import onnx_graphsurgeon as onnx_gs
    import numpy as np
    yolo_graph = onnx_gs.import_onnx(model_onnx)
    p3 = yolo_graph.outputs[0]
    p4 = yolo_graph.outputs[1]
    p5 = yolo_graph.outputs[2]
    decode_out_0 = onnx_gs.Variable(
        "DecodeNumDetection",
        dtype=np.int32
    )
    decode_out_1 = onnx_gs.Variable(
        "DecodeDetectionBoxes",
        dtype=np.float32
    )
    decode_out_2 = onnx_gs.Variable(
        "DecodeDetectionScores",
        dtype=np.float32
    )
    decode_out_3 = onnx_gs.Variable(
        "DecodeDetectionClasses",
        dtype=np.int32
    )

    decode_attrs = dict()

    decode_attrs["max_stride"] = int(max(model.stride))
    decode_attrs["num_classes"] = model.model[-1].nc
    decode_attrs["anchors"] = [float(v) for v in [10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326]]
    decode_attrs["prenms_score_threshold"] = 0.25

    decode_plugin = onnx_gs.Node(
        op="YoloLayer_TRT",
        name="YoloLayer",
        inputs=[p3, p4, p5],
        outputs=[decode_out_0, decode_out_1, decode_out_2, decode_out_3],
        attrs=decode_attrs
    )

    yolo_graph.nodes.append(decode_plugin)
    yolo_graph.outputs = decode_plugin.outputs
    yolo_graph.cleanup().toposort()
    model_onnx = onnx_gs.export_onnx(yolo_graph)

    d = {'stride': int(max(model.stride)), 'names': model.names}
    for k, v in d.items():
        meta = model_onnx.metadata_props.add()
        meta.key, meta.value = k, str(v)

    onnx.save(model_onnx, f)
    LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
    return f
    # except Exception as e:
    #     LOGGER.info(f'{prefix} export failure: {e}')

3.4 逐行解释export.py的代码

更改导出的名字,之前是导出output, 更改了output节点的名字, 变为p3, p4, p5, 这里对应的是YoloLayer_TRT上面的三个sigmoid节点

如果dynamic为True,对于输入的节点和输出的节点, 把维度0, 2, 3设定为可以调整的对象, 维度1是通道就不可调整了

torch.onnx.export(
        model,
        im,
        f,
        verbose=False,
        opset_version=opset,
        training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
        do_constant_folding=not train,
        input_names=['images'],
        output_names=['p3', 'p4', 'p5'],
        dynamic_axes={
            'images': {
                0: 'batch',
                2: 'height',
                3: 'width'},  # shape(1,3,640,640)
            'p3': {
                0: 'batch',
                2: 'height',
                3: 'width'},  # shape(1,25200,4)
            'p4': {
                0: 'batch',
                2: 'height',
                3: 'width'},
            'p5': {
                0: 'batch',
                2: 'height',
                3: 'width'}
        } if dynamic else None)

检查onnx是否符合规范

# Checks
    model_onnx = onnx.load(f)  # load onnx model
    onnx.checker.check_model(model_onnx)  # check onnx model

简化onnx

# Simplify
if simplify:
    # try:
    check_requirements(('onnx-simplifier',))
    import onnxsim

    LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
    model_onnx, check = onnxsim.simplify(model_onnx,
                                            dynamic_input_shape=dynamic,
                                            input_shapes={'images': list(im.shape)} if dynamic else None)
    assert check, 'assert check failed'
    onnx.save(model_onnx, f)
    # except Exception as e:
    #     LOGGER.info(f'{prefix} simplifier failure: {e}')

这一步为后续的解码准备了必要的输入输出的变量, 用英伟达的onnx_graphsurgeon包, p3, p4, p5是输入, decode_out_0/1/2/3 是对应的输出。有了输入输出才去添加yoloLayer

# add yolov5_decoding:
    import onnx_graphsurgeon as onnx_gs
    import numpy as np
    yolo_graph = onnx_gs.import_onnx(model_onnx)
    p3 = yolo_graph.outputs[0]
    p4 = yolo_graph.outputs[1]
    p5 = yolo_graph.outputs[2]
    decode_out_0 = onnx_gs.Variable(
        "DecodeNumDetection",
        dtype=np.int32
    )
    decode_out_1 = onnx_gs.Variable(
        "DecodeDetectionBoxes",
        dtype=np.float32
    )
    decode_out_2 = onnx_gs.Variable(
        "DecodeDetectionScores",
        dtype=np.float32
    )
    decode_out_3 = onnx_gs.Variable(
        "DecodeDetectionClasses",
        dtype=np.int32
    )

接下来设置解码过程的属性,并将解码层(YoloLayer)添加到yolo_graph中,最后导出修改后的 ONNX 模型。

通过model拿到max_stride, num_classes, anchors(锚框), 目标检测的分阈值, 设置为0.25最后全部储存到字典。这一步也是为了Yolo_layer

decode_attrs = dict()

decode_attrs["max_stride"] = int(max(model.stride))
decode_attrs["num_classes"] = model.model[-1].nc
decode_attrs["anchors"] = [float(v) for v in [10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326]]
decode_attrs["prenms_score_threshold"] = 0.25

输入点有了, 输出点有了, attrs也有了,定义名称为decode_plugin的节点, 然后加入yolo_graph, 然后最后输出

decode_plugin = onnx_gs.Node(
        op="YoloLayer_TRT",
        name="YoloLayer",
        inputs=[p3, p4, p5],
        outputs=[decode_out_0, decode_out_1, decode_out_2, decode_out_3],
        attrs=decode_attrs
    )

    yolo_graph.nodes.append(decode_plugin)
    yolo_graph.outputs = decode_plugin.outputs
    yolo_graph.cleanup().toposort()
    model_onnx = onnx_gs.export_onnx(yolo_graph)

    d = {'stride': int(max(model.stride)), 'names': model.names}
    for k, v in d.items():
        meta = model_onnx.metadata_props.add()
        meta.key, meta.value = k, str(v)

    onnx.save(model_onnx, f)
    LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
    return f
    # except Exception as e:
    #     LOGGER.info(f'{prefix} export failure: {e}')

4. yolo.py文件的更改

在这里插入图片描述
这一坨全部不要了就保留sigmoid就可以了,然后就是直接硬编码t就是int32

diff --git a/models/yolo.py b/models/yolo.py
index 02660e6..c810745 100644
--- a/models/yolo.py
+++ b/models/yolo.py
@@ -55,29 +55,15 @@ class Detect(nn.Module):
         z = []  # inference output
         for i in range(self.nl):
             x[i] = self.m[i](x[i])  # conv
-            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
-            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
-
-            if not self.training:  # inference
-                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
-                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
-
-                y = x[i].sigmoid()
-                if self.inplace:
-                    y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i]  # xy
-                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
-                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
-                    xy, wh, conf = y.split((2, 2, self.nc + 1), 4)  # y.tensor_split((2, 4, 5), 4)  # torch 1.8.0
-                    xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy
-                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh
-                    y = torch.cat((xy, wh, conf), 4)
-                z.append(y.view(bs, -1, self.no))
-
-        return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
+            y = x[i].sigmoid()
+            z.append(y)
+        return z
 
     def _make_grid(self, nx=20, ny=20, i=0):
         d = self.anchors[i].device
-        t = self.anchors[i].dtype
+        # t = self.anchors[i].dtype
+        # TODO(tylerz) hard-code data type to int
+        t = torch.int32
         shape = 1, self.na, ny, nx, 2  # grid shape
         y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
         if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
-- 
2.36.0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/564636.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

windows先的conda环境复制到linux环境

如果是迁移的环境一致&#xff1a;同是windows或同是linux直接用这个命令即可&#xff1a; conda create -n new_env_name --clone old_env_path 如果是window的环境迁移到linux这种跨环境就不能用上面的方法&#xff0c;网上这方面的资料也很多&#xff0c;记录一下我的…

小蝌蚪找妈妈:Python之作用域链与 LEGB 原则

文章目录 参考描述作用域对象全局作用域globals() 局部作用域locals() 包含作用域内置作用域builtins 模块builtins 模块与 \_\_builtins__builtins is \_\_builtins__??? \_\_builtins__ 与内置作用域赶不走的 \_\_builtins__ 作用域链作用域链 与 LEGB 原则狗急跳墙之法 参…

【Go语言从入门到实战】基础篇

Go语言从入门到实战 — 基础篇 First Go Program 编译 & 运行 基本程序结构 应用程序入口 package mainimport "fmt"func main() {fmt.Println("Hello World") }退出返回值 package mainimport ("fmt""os" )func main() {fmt.Pr…

哪个产品功能重要?KANO模型帮你

哪个产品功能重要&#xff1f;KANO模型来帮你 模型工具可以协助思考和系统化改进 KANO模型是小日本一个教授提出 趣讲大白话&#xff1a;往往&#xff0c;怎么思考&#xff0c;比思考什么重要 【趣讲信息科技175期】 **************************** 东京理工大学教授狩野纪昭(No…

【医学图像】图像分割系列.2 (diffusion)

介绍几篇使用diffusion来实现医学图像分割的论文&#xff1a;DARL&#xff08;ICLR2023&#xff09;&#xff0c;MedSegDiff&#xff08;MIDL2023&#xff09;& MedSegDiff-V2&#xff08;arXiv2023&#xff09;&#xff0c;ImgX-DiffSeg&#xff08;arXiv2023&#xff09;…

CTF 2015: Search Engine-fastbin_dup_into_stack

参考&#xff1a; [1]https://gsgx.me/posts/9447-ctf-2015-search-engine-writeup/ [2]https://blog.csdn.net/weixin_38419913/article/details/103238963(掌握利用点&#xff0c;省略各种逆向细节) [3]https://bbs.kanxue.com/thread-267876.htm&#xff08;逆向调试详解&am…

web功能测试方法大全—完整!全面!(纯干货,建议收藏哦~)

本文通过六个部分为大家梳理了web功能测试过程中&#xff0c;容易出现的遗漏的部分&#xff0c;用以发掘自己工作中的疏漏。&#xff08;纯干货&#xff0c;建议收藏哦~&#xff09; 一、输入框 1、字符型输入框 2、数值型输入框 3、日期型输入框 4、信息重复 在一些需要命…

GPT-4版Windows炸场,整个系统就是一个对话机器人,微软开建AI全宇宙

原创 智东西编辑部 智东西 Windows的GPT时刻到来&#xff0c;变革PC行业。 作者 | 智东西编辑部 今日凌晨&#xff0c;Windows迎来了GPT-4时刻&#xff01; 在2023微软Build大会上&#xff0c;微软总裁萨蒂亚纳德拉&#xff08;Satya Nadella&#xff09;宣布推出Windows Co…

实现免杀:Shellcode的AES和XOR加密策略(vt查杀率:4/70)

前言 什么是私钥和公钥 私钥和公钥是密码学中用于实现加密、解密和数字签名等功能的关键组件。 私钥是一种加密算法中的秘密密钥&#xff0c;只有密钥的拥有者可以访问和使用它。私钥通常用于数字签名和数据加密等场景中&#xff0c;它可以用于对数据进行加密&#xff0c;同…

头部效应凸显,消金行业迈入“巨头赛”?

回顾已经过去的2022年&#xff0c;消金行业面临着来自多方面的考验&#xff0c;承压前行&#xff0c;而随着进入2023年&#xff0c;相关企业也陆续展示出过去一年的发展成果&#xff0c;以此为后续发展做出指引。 当前&#xff0c;30家已开业的消金公司中&#xff0c;29家的20…

《消息队列高手课》课程笔记(三)

如何利用事务消息实现分布式事务&#xff1f; 什么是分布式事务&#xff1f; 消息队列中的“事务”&#xff0c;主要解决的是消息生产者和消息消费者的数据一致性问题。如果我们需要对若干数据进行更新操作&#xff0c;为了保证这些数据的完整性和一致性&#xff0c;我们希望…

独立站怎么搭建?搭建一个独立站的10个建议和步骤

要搭建一个独立站&#xff08;也称为个人网站或博客&#xff09;&#xff0c;以下是一些建议和步骤&#xff1a; 选择一个合适的域名&#xff1a;选择一个简洁、易记且与您网站内容相关的域名。确保域名可用&#xff0c;并注册该域名。 寻找一个合适的主机服务提供商&#xff…

【Cpp】哈希之手撕闭散列/开散列

文章目录 unorderedunordered系列关联式容器unordered_map和unordered_set概述unordered_map的文档介绍unordered_map的接口说明 底层结构 哈希哈希/散列表 概念哈希冲突哈希函数哈希函数设计原则&#xff1a;常见哈希函数 哈希冲突解决闭散列线性探测二次探测 开散列 哈希表的…

C语言数据结构——树、堆(堆排序)、TOPK问题

&#x1f436;博主主页&#xff1a;ᰔᩚ. 一怀明月ꦿ ❤️‍&#x1f525;专栏系列&#xff1a;线性代数&#xff0c;C初学者入门训练&#xff0c;题解C&#xff0c;C的使用文章&#xff0c;「初学」C&#xff0c;数据结构 &#x1f525;座右铭&#xff1a;“不要等到什么都没…

使用go语言构建区块链 Part4.事务1

英文源地址 简介 事务是比特币的核心, 区块链的唯一目的是以安全可靠的方式存储交易, 因此在交易创建后没有人可以修改. 今天我们开始实现事务, 但由于这是一个相当大的主题, 我将它分成两部分: 在这一部分中, 我们将实现事务的通用机制, 在第二部分中, 我们将研究细节. 此外…

让你在Windows打开Sketch格式再也不愁

Sketch是Macos的专用矢量绘图应用。在Sketch软件中&#xff0c;ios开发者可以轻松设计图层面板等图层的常用操作&#xff0c;广泛应用于产品的交互设计和UI设计&#xff0c;帮助很多设计师创作出很多优秀的作品。然而&#xff0c;Sketch只服务于Macos系统&#xff0c;这使得许多…

Laravel框架06:文件、迁移填充、会话、缓存

Laravel框架06&#xff1a;文件、迁移填充、会话、缓存 一、文件上传1. 文件上传表单2. 上传业务处理3. 全部代码 二、数据表的迁移与填充1. 迁移文件① 创建迁移文件② 编写迁移文件③ 执行迁移文件④ 回滚迁移文件 2. 填充&#xff08;种子&#xff09;文件① 创建填充文件②…

C++常用的支持中文的GUI库Qt 6之三: Qt 6的项目的发布

C常用的支持中文的GUI库Qt 6之三&#xff1a; Qt 6的项目的发布 本文接着上一篇“C常用的支持中文的GUI库Qt 6之二&#xff1a;项目的结构、资源文件的使用” https://blog.csdn.net/cnds123/article/details/130741807介绍&#xff0c;并使用其中的例子。 程序代码能正确编译…

【STL】list的使用

系列文章 学习C途中自然绕不过STL&#xff0c;在这个系列文章之中 我们讲了string的使用和string的模拟实现&#xff0c;以及vector的使用、vector的模拟实现。 感兴趣的可以翻翻看。 目录 系列文章 前言 默认成员函数 构造函数 拷贝构造 赋值重载 迭代器 容量查询 …

人人都能看懂的Spring源码解析,Spring声明式事务关于传播特性、事务挂起与恢复的处理

人人都能看懂的Spring源码解析&#xff0c;Spring声明式事务关于传播特性、事务挂起与恢复的处理 原理解析AbstractPlatformTransactionManager事务传播特性事务挂起与恢复通过DataSourceTransactionManager看事务挂起和恢复的具体实现 代码走读总结 往期文章&#xff1a; 人人…