【毕业设计】深度学习社交安全距离检测系统 - python opencv

news2024/12/24 21:56:07

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 相关技术
    • 3.1 YOLOV4
    • 3.2 基于 DeepSort 算法的行人跟踪
  • 4 最后


0 前言

🔥 Hi,大家好,这里是丹成学长的毕设系列文章!

🔥 对毕设有任何疑问都可以问学长哦!

这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定要提前准备,避免到后面措手不及,草草了事。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的新项目是

🚩 基于深度学习疫情社交安全距离检测算法

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 选题指导, 项目分享:

https://gitee.com/yaa-dc/BJH/blob/master/gg/cc/README.md

1 课题背景

安全的社交距离是公共预防传染病毒的途径之一。所以,在人群密集的区域进行社交距离的安全评估是十分重要的。社交距离的测量旨在保持个体之间的物理距离和减少相互接触的人群来减缓或阻止病毒传播,在抗击病毒和预防大流感中发挥重要作用。但时刻保持安全距离具有一定的难度,特别是在校园,工厂等场所,在这种情况下,开发智能摄像头等技术尤为关键。将人工智能,深度学习集成至安全摄像头对行人进行社交距离评估。现阶段针对疫情防范的要求,主要采用人工干预和计算机处理技术。人工干预存在人力资源要求高,风险大,时间成本高等等缺点。计算机处理等人工智能技术的发展,对社交安全距离的安全评估具有良好的效果。

2 实现效果

通过距离分类人群的高危险和低危险距离。

在这里插入图片描述
相关代码

import argparse
from utils.datasets import *
from utils.utils import *
 
def detect(save_img=False):
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
 
    # Initialize
    device = torch_utils.select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA
 
    # Load model
    google_utils.attempt_download(weights)
    model = torch.load(weights, map_location=device)['model'].float()  # load to FP32
    # torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning
    # model.fuse()
    model.to(device).eval()
    if half:
        model.half()  # to FP16
 
    # Second-stage classifier
    classify = False
    if classify:
        modelc = torch_utils.load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model'])  # load weights
        modelc.to(device).eval()
 
    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        torch.backends.cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)
 
    # Get names and colors
    names = model.names if hasattr(model, 'names') else model.modules.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
 
    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
 
        # Inference
        t1 = torch_utils.time_synchronized()
        pred = model(img, augment=opt.augment)[0]
 
        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,
                                   fast=True, classes=opt.classes, agnostic=opt.agnostic_nms)
        t2 = torch_utils.time_synchronized()
 
        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)
 
        # List to store bounding coordinates of people
        people_coords = []
 
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s
 
            save_path = str(Path(out) / Path(p).name)
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  #  normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
 
                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string
 
                # Write results
                for *xyxy, conf, cls in det:
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:
                            file.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label format
 
                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        if label is not None:
                            if (label.split())[0] == 'person':
                                people_coords.append(xyxy)
                                # plot_one_box(xyxy, im0, line_thickness=3)
                                plot_dots_on_people(xyxy, im0)
 
            # Plot lines connecting people
            distancing(people_coords, im0, dist_thres_lim=(200,250))
 
            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))
 
            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration
 
            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
 
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
                    vid_writer.write(im0)
 
    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)
 
    print('Done. (%.3fs)' % (time.time() - t0))
 

3 相关技术

3.1 YOLOV4

YOLOv4使用卷积网络 CSPDarknet-53 特征提取,网络结构模型如图 2 所示。在每个 Darknet-53的残块行加上 CSP(Cross Stage Partial)结构13,将基础层划分为两部分,再通过跨层次结构的特征融合进行合并。并采用 FPN( feature pyramid networks)结构加强特征金字塔,最后用不同层的特征的高分辨率来提取不同尺度特征图进行对象检测。最终网络输出 3 个不同尺度的特征图,在三个不同尺度特征图上分别使用 3 个不同的先验框(anchors)进行预测识别,使得远近大小目标均能得到较好的检测。
在这里插入图片描述
YOLOv4 的先验框尺寸是经PASCALL_VOC,COCO 数据集包含的种类复杂而生成的,并不一定完全适合行人。本研究旨在研究行人之间的社交距离,针对行人目标检测,利用聚类算法对 YOLOv4 的先验框微调,首先将行人数据集F依据相似性分为i个对象,即在这里插入图片描述,其中每个对象都具有 m 个维度的属性。聚类算法的目的是 i 个对象依据相似性聚集到指定的 j 个类簇,每个对象属于且仅属于一个其到类簇中心距离最小的类簇中心。初始化 j 个 聚 类 中 心C c c c   1 2 , ,..., j,计算每一个对象到每一个聚类中心的欧式距离,见公式
在这里插入图片描述
之后,依次比较每个对象到每个聚类中心的距离,将对象分配至距离最近的簇类中心的类簇中,
得到 在这里插入图片描述个类簇S s s s  1 2 , ,..., l,聚类算法中定义了类簇的原型,类簇中心就是类簇内所有对象在各个维度的均值,其公式见
在这里插入图片描述
相关代码

def check_anchors(dataset, model, thr=4.0, imgsz=640):
    # Check anchor fit to data, recompute if necessary
    print('\nAnalyzing anchors... ', end='')
    m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]  # Detect()
    shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
    wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float()  # wh

    def metric(k):  # compute metric
        r = wh[:, None] / k[None]
        x = torch.min(r, 1. / r).min(2)[0]  # ratio metric
        best = x.max(1)[0]  # best_x
        return (best > 1. / thr).float().mean()  #  best possible recall

    bpr = metric(m.anchor_grid.clone().cpu().view(-1, 2))
    print('Best Possible Recall (BPR) = %.4f' % bpr, end='')
    if bpr < 0.99:  # threshold to recompute
        print('. Attempting to generate improved anchors, please wait...' % bpr)
        na = m.anchor_grid.numel() // 2  # number of anchors
        new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
        new_bpr = metric(new_anchors.reshape(-1, 2))
        if new_bpr > bpr:  # replace anchors
            new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
            m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid)  # for inference
            m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1)  # loss
            print('New anchors saved to model. Update model *.yaml to use these anchors in the future.')
        else:
            print('Original anchors better than new anchors. Proceeding with original anchors.')
    print('')  # newline

3.2 基于 DeepSort 算法的行人跟踪

YOLOv4中完成行人目标检测后生成边界框(Bounding box,Bbox),Bbox 含有包含最小化行人边框矩形的坐标信息,本研究引入 DeepSort 算法[18]完成对行人的质点进行跟踪,目的是为了在运动矢量分析时算行人安全社交距离中。首先,对行人进行质点化计算。其质点计算公式如
在这里插入图片描述
确定行人质点后,利用 DeepSort 算法实现对多个目标的精确定位与跟踪,其核心算法流程如图所示:
在这里插入图片描述
相关代码

class TrackState:
	'''
	单个轨迹的三种状态
	'''
    Tentative = 1 #不确定态
    Confirmed = 2 #确定态
    Deleted = 3 #删除态

class Track:
    def __init__(self, mean, covariance, track_id, class_id, conf, n_init, max_age,
                 feature=None):
        '''
        mean:位置、速度状态分布均值向量,维度(8×1)
        convariance:位置、速度状态分布方差矩阵,维度(8×8)
        track_id:轨迹ID
        class_id:轨迹所属类别
        hits:轨迹更新次数(初始化为1),即轨迹与目标连续匹配成功次数
        age:轨迹连续存在的帧数(初始化为1),即轨迹出现到被删除的连续总帧数
        time_since_update:轨迹距离上次更新后的连续帧数(初始化为0),即轨迹与目标连续匹配失败次数
        state:轨迹状态
        features:轨迹所属目标的外观语义特征,轨迹匹配成功时添加当前帧的新外观语义特征
        conf:轨迹所属目标的置信度得分
        _n_init:轨迹状态由不确定态到确定态所需连续匹配成功的次数
        _max_age:轨迹状态由不确定态到删除态所需连续匹配失败的次数
        '''   
        self.mean = mean
        self.covariance = covariance
        self.track_id = track_id
        self.class_id = int(class_id)
        self.hits = 1
        self.age = 1
        self.time_since_update = 0

        self.state = TrackState.Tentative
        self.features = []
        if feature is not None:
            self.features.append(feature) #若不为None,初始化外观语义特征

        self.conf = conf
        self._n_init = n_init
        self._max_age = max_age

    def increment_age(self):
    	'''
    	预测下一帧轨迹时调用
    	'''
        self.age += 1 #轨迹连续存在帧数+1
        self.time_since_update += 1 #轨迹连续匹配失败次数+1

    def predict(self, kf):
    	'''
    	预测下一帧轨迹信息
    	'''
        self.mean, self.covariance = kf.predict(self.mean, self.covariance) #卡尔曼滤波预测下一帧轨迹的状态均值和方差
        self.increment_age() #调用函数,age+1,time_since_update+1

    def update(self, kf, detection, class_id, conf):
    	'''
    	更新匹配成功的轨迹信息
    	'''
        self.conf = conf #更新置信度得分
        self.mean, self.covariance = kf.update(
            self.mean, self.covariance, detection.to_xyah()) #卡尔曼滤波更新轨迹的状态均值和方差
        self.features.append(detection.feature) #添加轨迹对应目标框的外观语义特征
        self.class_id = class_id.int() #更新轨迹所属类别

        self.hits += 1 #轨迹匹配成功次数+1
        self.time_since_update = 0 #匹配成功时,轨迹连续匹配失败次数归0
        if self.state == TrackState.Tentative and self.hits >= self._n_init:
            self.state = TrackState.Confirmed #当连续匹配成功次数达标时轨迹由不确定态转为确定态

    def mark_missed(self):
    	'''
    	将轨迹状态转为删除态
    	'''
        if self.state == TrackState.Tentative:
            self.state = TrackState.Deleted #当级联匹配和IOU匹配后仍为不确定态
        elif self.time_since_update > self._max_age:
            self.state = TrackState.Deleted #当连续匹配失败次数超标

	'''
	该部分还存在一些轨迹坐标转化及状态判定函数,具体可参考代码来源
	'''

4 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/51194.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

鲜花商城|基于Springboot实现鲜花商城系统

作者主页&#xff1a;编程千纸鹤 作者简介&#xff1a;Java、前端、Pythone开发多年&#xff0c;做过高程&#xff0c;项目经理&#xff0c;架构师 主要内容&#xff1a;Java项目开发、毕业设计开发、面试技术整理、最新技术分享 收藏点赞不迷路 关注作者有好处 文末获得源码 …

xgboost 为什么拟合残差能获得更好的效果(思考)

以时序预测为例&#xff1a; 现在要 预测2022年之后的值&#xff0c;可以预测下降幅度&#xff08;和预测残差的步骤一样&#xff09;。 假设有一个隐藏的规律&#xff1a;对于21年的高峰&#xff0c;22年的下降幅度会更大&#xff08;如time3是&#xff0c;下降幅度会比其他的…

Spring依赖注入源码解析(下)

文章目录前言本章目标resolveDependency—解决依赖查找1、doResolveDependency2、Autowreid寻找依赖流程图依赖注入完整流程图前言 在上一篇文章Spring依赖注入源码解析&#xff08;上&#xff09;中&#xff0c;主要介绍了寻找注入点、以及注入源码分析 本章目标 这一篇主要…

市面上最适合跑步用的耳机有哪些、分享五款最优秀的跑步耳机

随着人们日益对健康的重视&#xff0c;”全民健身“正在全国&#xff0c;乃至全世界蔓延开来&#xff0c;其中跑步锻炼凭借着门槛低&#xff0c;益处多成为了大部分人的健身的首选。而随着跑步大军的壮大&#xff0c;国内蓝牙耳机市场也是一片火热。其中蓝牙无线运动耳机凭借着…

【python小项目】用python写一个小工具——番茄钟

用python写一个小工具——番茄钟 最近听到朋友说在用番茄钟&#xff0c;有点兴趣也想下载一个来用用&#xff0c;后面仔细一想这玩意做起来也不难&#xff0c;索性自己顺手写一个算了&#xff0c;在这里也分享给大家了 一、功能简述 番茄钟即番茄工作法&#xff0c;番茄工作法…

产品经理必备的能力有哪些?

从一名普通的产品经理到一名优秀的产品经理要经历什么&#xff1f;哪些又是产品经理必备的能力&#xff1f;产品经理对能力的需求也不尽相同&#xff0c;在不同的团队合作模式下&#xff0c;还必须懂得各种能力。 一、业务分析能力 数据分析能力该是什么样的呢 1、有数据意识…

indexDB 本地数据库

indexDB 本地数据库 IndexedDB是一种使用浏览器存储大量数据的方法&#xff0c;它创造的数据可以被查询&#xff0c;并且可以离线使用。 优点&#xff1a;空间大小&#xff0c;大于250M&#xff1b;支持二进制&#xff1a;IndexedDB不但可以存储对象&#xff0c;字符串等&#…

利用MS11_003 IE漏洞攻击win7主机

利用MS11_003 IE漏洞攻击win7主机 微软2011年2月9日发布12个安全补丁,其中3个最高级别为严重等级,9个为重要等级,共计修复了影响 Windows、Office、IE 和 IIS 的22个漏洞。 MS11-003、MS11-006 和 MS11-007 为严重等级,需要优先部署。其中,MS11-003 的最高利用指数为1它修…

基于web的课程管理系统设计与实现(java+SqlServer)

目 录 摘 要 I Abstract II 1 绪论 1 1.1 课题背景 1 1.2 本课题研究的意义 2 1.3 主要研究内容 3 2 开发环境与相关技术 4 2.1 JSP技术 4 2.1.1 JAVA简介 4 2.1.2 JSP简介 4 2.1.3 SSH2框架介绍 5 2.2 Myeclipse介绍 6 2.3 SQL2008 数据库 7 2.4 Browser/Server&#xff08;B…

GD32实现串口空闲(IDLE)中断 + DMA机制接收数据

前言 串口功能在单片机开发中&#xff0c;是比较常用的外设&#xff0c;熟练使用串口功能也是驱动开发必备的技能之一。 DMA是一种CPU辅助手段&#xff0c;可以在CPU不参与的情况下&#xff0c;是做一些辅助CPU的事情&#xff0c;如通常的数据搬运。 在没有DMA之前&#xff0c;…

hadoop3.x学习(一)--安装与环境配置

一、hadoop的组成 hadoop1.x&#xff1a;Commons、HDFS&#xff08;数据存储&#xff09;、MapReduce&#xff08;资源调度计算&#xff09;hadoop2.x:Commons、HDFS&#xff08;数据存储&#xff09;、MapReduce&#xff08;计算&#xff09;、Yarn(资源调度) 1.1 HDFS 分布式…

【电商项目实战】个人资料(详细篇)

&#x1f341;博客主页&#xff1a;&#x1f449;不会压弯的小飞侠 ✨欢迎关注&#xff1a;&#x1f449;点赞&#x1f44d;收藏⭐留言✒ ✨系列专栏&#xff1a;&#x1f449;SpringBoot电商项目实战 ✨学习社区&#xff1a; &#x1f449;不会压弯的小飞侠 ✨知足上进&#x…

Linear Model 线性模型

文章目录1、Linear Model 线性模型1.1 问题引入1.2 选择模型1.3 损失 Loss1.4 均方误差 MSE1.5 代码1.6 更换模型1、Linear Model 线性模型 B站视频教程传送门&#xff1a;PyTorch深度学习实践 - 线性模型 1.1 问题引入 假设学生在期末考试中得到y分&#xff0c;如果他们花了…

【正点原子FPGA连载】第二十五章 双路高速AD实验 摘自【正点原子】DFZU2EG/4EV MPSoC 之FPGA开发指南V1.0

1&#xff09;实验平台&#xff1a;正点原子MPSoC开发板 2&#xff09;平台购买地址&#xff1a;https://detail.tmall.com/item.htm?id692450874670 3&#xff09;全套实验源码手册视频下载地址&#xff1a; http://www.openedv.com/thread-340252-1-1.html 第二十五章 双路…

干货 | 读懂这篇文,玩游戏还会卡顿?

玩游戏的时候最怕的就是卡顿。排位赛的紧急关头&#xff0c;明明马上就能上一段位&#xff0c;却因为卡顿导致给对方送人头。还把对手送上了王者。引起队友骂声一片。作为测试工程师的你&#xff0c;可以忍&#xff1f; 卡顿测试也是专项测试里的一种&#xff0c;更多精彩测试内…

【学习笔记】深度学习入门:基于Python的理论与实现-Python入门与感知机

CONTENTS一、Python入门1.1 NumPy1.2 Matplotlib二、感知机2.1 感知机是什么2.2 简单逻辑电路2.3 感知机的实现2.4 感知机的局限性2.5 多层感知机一、Python入门 1.1 NumPy 在深度学习的实现中&#xff0c;经常出现数组和矩阵的计算。NumPy的数组类&#xff08;numpy.array&a…

C语言函数调用的过程图解深入剖析

希望是美好的&#xff0c;也许是人间至善&#xff0c;而美好的事物永不消逝。——《肖申克的救赎》 目录 1、什么是函数栈帧&#xff1f; 2、理解函数栈帧能解决什么问题 3、函数栈帧是什么 3.1什么是栈&#xff1f; 3.2认识寄存器和汇编指令 4、函数调用的整个过程 5、…

LBA逻辑区块地址

现在很多硬盘采用同密度盘片&#xff0c;意味着内外磁道上的扇区数量不同&#xff0c;扇区数量增加&#xff0c;容量增加&#xff0c;3D很难定位寻址&#xff0c;出现了新的寻址模式&#xff1a;LBA(Logical Block Addressing)。在LBA地址中&#xff0c;地址不再表示实际硬盘的…

Mysql 并发多版本控制MVCC

什么是MVCC MVCC&#xff0c;全称Multi-Version Concurrency Control&#xff0c;即多版本并发控制。MVCC是一种并发控制的方法&#xff0c;一般在数据库管理系统中&#xff0c;实现对数据库的并发访问&#xff0c;在编程语言中实现事务内存。 一般情况下我们使用mysql数据库的…

Prometheus 采集vCenter7监控数据

前提要求 安装docker&#xff0c;docker-compose创建vmware_exporter目录 mkdir -p /vmware_exporter 创建基于docker部署vmware_exporter脚本 VSPHERE_HOST: "vCenter 管理地址" VSPHERE_IGNORE_SSL: "True" VSPHERE_USER: "administratorvsphere…