GD32实现串口空闲(IDLE)中断 + DMA机制接收数据

news2024/12/25 9:00:12

前言

  • 串口功能在单片机开发中,是比较常用的外设,熟练使用串口功能也是驱动开发必备的技能之一。
    DMA是一种CPU辅助手段,可以在CPU不参与的情况下,是做一些辅助CPU的事情,如通常的数据搬运。
    在没有DMA之前,数据读取时,需要CPU的处理,在多任务处理时,增加资源紧缺(CPU调度);
    引入DMA之后,数据可以直接先进入DMA中处理,然后通过相应的标志,在需要的时候去DMA拿去即可,这样就极大的减轻CPU负担,提高了CPU的利用效率,有更多的时间去处理其它的事情。

  • 本文讲的即是利用串口空闲(IDLE)中断 + DMA的机制来处理接收的数据。关于空闲的概念我在之前文章模拟串口收发驱动(采用IDLE信号机制),做了提及和介绍,也是在这根据这个概念在模拟情况下也引入这一机制,极大的提高的处理效率。

  • 本文是基于GD32F330芯片做的代码示范,其实STM32或其他ARM芯片也一样可以按照下面流程方式进行配置使用,都有实现过,故总结之。


正文(流程图 + 示例代码)

请添加图片描述


在使用DMA之前需要通过MCU手册了解到当前外设映射的所在DMA通道;
上图为GD32F330芯片的DMA请求映射关系图,可以看到下面示例的USART0接收(RX)即映射到DMA _CH2上面。

  • 框架流程图
收到空闲中断标志
接收数据帧标志置位,清除空闲中断标志
读取完后清除缓存以及数据帧标志
接收下一帧数据
初始化串口GPIO
初始化串口配置以及串口中断和DMA配置,使能空闲中断
中断中读取空闲中断标志
关闭DMA
读取串口缓存数据
重新设置DMA缓存大小,并使能DMA

  • 初始化配置
#define U1_RX_MAX_SIZE (150u)
unsigned char gb_uart1_rx_frame_flag = 0;//接收数据帧标志
unsigned char uart1_rx_buff[U1_RX_MAX_SIZE] = {0};//开辟的接收数据缓存区,按实际可能接收最大的数据长度来开辟即可。

/*
**串口1 GPIO初始化
*/
void gd32_uart1_gpio_init(void)
{
    /* enable GPIO clock */
    rcu_periph_clock_enable(RCU_GPIOA);
    /* connect port to USART0 tx */
    gpio_af_set(GPIOA, GPIO_AF_1, GPIO_PIN_9);
    /* connect port to USART0 rx */
    gpio_af_set(GPIOA, GPIO_AF_1, GPIO_PIN_10);
    /* configure USART tx as alternate function push-pull */
    gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_9);
    gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_10MHZ, GPIO_PIN_9);
    /* configure USART rx as alternate function push-pull */
    gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_10);
    gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_10MHZ, GPIO_PIN_10); 
}

/*
**串口参数配置
*/
void gd32_uart1_cfg_init(unsigned int baudrate)
{
	  nvic_irq_enable(USART0_IRQn,0, 1);
	
    /* enable USART clock */
    rcu_periph_clock_enable(RCU_USART0);
    /* configure USART */
    usart_deinit(USART0);
    usart_baudrate_set(USART0, baudrate);
    usart_receive_config(USART0, USART_RECEIVE_ENABLE);//打开串口接收功能
    usart_transmit_config(USART0, USART_TRANSMIT_ENABLE);//打开串口发送功能
    usart_dma_receive_config(USART0, USART_DENR_ENABLE);//使能 DMA接收 功能
    usart_enable(USART0);//使能串口

    while (RESET == usart_flag_get(USART0, USART_FLAG_IDLE))
        ;
    usart_flag_clear(USART0, USART_FLAG_IDLE);//清除IDLE空闲标志,防止上电即误触发空闲。
    usart_interrupt_enable(USART0, USART_INT_IDLE);//使能IDLE空闲中断
}

/*
**串口0 DMA(发送通道DMA_CH1,接收通道DMA_CH2)配置初始化
*/
void gd32_uart1_dma_init(void)
{
    dma_parameter_struct dma_init_struct;

    rcu_periph_clock_enable(RCU_DMA);

    /* deinitialize DMA channel2 (USART0 rx) */
    dma_deinit(DMA_CH2);
    dma_struct_para_init(&dma_init_struct);
    dma_init_struct.direction   = DMA_PERIPHERAL_TO_MEMORY;//数据是外设到内存(缓存)
    dma_init_struct.memory_addr = (uint32_t)uart1_rx_buff;//数据放置的内存(缓存)地址
    dma_init_struct.memory_inc  = DMA_MEMORY_INCREASE_ENABLE;//内存(缓存)地址增加开启
    dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;//内存(缓存)数据宽度是8bit,即1字节的存储。
    dma_init_struct.number       = U1_RX_MAX_SIZE;//开辟的内存(缓存)的大小
    dma_init_struct.periph_addr  = (uint32_t)&USART_RDATA(USART0);//数据来源的外设地址(串口接收寄存器)
    dma_init_struct.periph_inc   = DMA_PERIPH_INCREASE_DISABLE;//禁止外设地址增加
    dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;//外设宽度
    dma_init_struct.priority     = DMA_PRIORITY_ULTRA_HIGH;//DMA动作优先级(最高)
    dma_init(DMA_CH2, &dma_init_struct);
    /* configure DMA mode */
    dma_circulation_disable(DMA_CH2);//禁止DMA循环接收
	dma_memory_to_memory_disable(DMA_CH2);//关闭内存到内存方式。
    /* enable DMA channel2 */
    dma_channel_enable(DMA_CH2);//使能DMA通道。
}

/*
**串口1初始化
*/
void gd32_uart1_init(void)
{
    gd32_uart1_dma_init();
    gd32_uart1_gpio_init();
    gd32_uart1_cfg_init(115200); 
}

/*
**DMA读取接收的数据长度
*/
unsigned int uart1_dma_read(void)
{
    /*
    dma_transfer_number_get(DMA_CH2);是获取当前指针计数值,
    用内存缓冲区大小 - 此计数值 = 接收到的数据长度(这里单位为字节)。
    需要说明下在读取数据长度的时候需要先把接收DMA关闭,读取完了或者是数据处理完了在打开接收DMA,防止在处理的过程中有数据到来而出错。
    */
    return U1_RX_MAX_SIZE - (dma_transfer_number_get(DMA_CH2));
}


/*
**DMA重配置缓存大小,并使能DMA
*/
void uart1_dma_refcg(void)
{
    dma_transfer_number_config(DMA_CH2, U1_RX_MAX_SIZE); //重载缓存大小
    dma_channel_enable(DMA_CH2);
}

  • 中断接收处理
void USART0_IRQHandler(void)
{
    if(RESET != usart_interrupt_flag_get(USART0, USART_INT_FLAG_IDLE)) 
    {
        /* disable DMA and reconfigure */
        dma_channel_disable(DMA_CH2);	//关闭DMA,在没有读取该接收帧数据之前禁止DMA再接收数据。
         /* number of data received */
        gb_uart1_rx_frame_flag = 1;//接收数据帧标志置位       		
        /* clear IDLE flag */
        usart_interrupt_flag_clear(USART0, USART_INT_FLAG_IDLE);//

    }
}
  • 串口读缓存数据操作
/*
**串口读函数
*/
unsigned char *serial_read(const unsigned char port_num,unsigned int *const plen)
{
	switch(port_num)
	{
		case 0:
			if(gb_uart1_rx_frame_flag)
			{
				*plen = uart1_dma_read();//取数据长度	
				return uart1_rx_buff;//取数据指针
			}		
		break;
		case 1:	
		break;	
        defualt:
        break;	
	}
  *plen =0;
  return NULL;
}
  • 串口清缓存数据操作
/*
**串口缓存清除
*/
void serial_flush(const unsigned char port_num,unsigned int flush_sz)
{
    switch(port_num)
	{
		case 0:
            if(gb_uart1_rx_frame_flag)
            {
                for(unsigned int i=0;i<U1_RX_MAX_SIZE;i++)//U1_RX_MAX_SIZE<=flush_sz?U1_RX_MAX_SIZE:flush_sz
                {
                    uart1_rx_buff[i]=0x00;//清除缓存	
                }
                gb_uart1_rx_frame_flag=0;
                uart1_dma_refcg();//重配置DMA				
            }
		break;
		case 1:
		break;
        default:
        break;
	}
}

  • 调用
/*
**设备串口通信
*/
unsigned char dev_com_task(xxr_un *const rxd_me)
{
	unsigned char ack_code = ACK_OK; //响应值
	unsigned char shk_inf[13] = {0};
	unsigned int dat_len = 0;
	const unsigned char *p = com_seial_read(&dat_len); //读取串口数据

	if (0 == dat_len || NULL == p)
		return 0; /*数据为空,直接返回*/

	(MAX_PPT_RX_UDAT_LEN + 9) < dat_len ? dat_len = (MAX_PPT_RX_UDAT_LEN + 9) : 0;
	for (unsigned short int i = 0; i < dat_len; i++)
	{
		rxd_me->buff[i] = *p++;
	}
	/*协议头判断*/
	if (xx_dev_recv_msg_header_is(rxd_me->frame.sync_header))
		goto __END_HANDLE;
	/*负载长度信息错误*/
	if (MAX_PPT_RX_UDAT_LEN < rxd_me->frame.len)
		goto __END_HANDLE;
	const unsigned char msg_ckv = (xx_msg_chksum(&rxd_me->buff[0], 8) + xx_msg_chksum(&rxd_me->frame.udat[0], rxd_me->frame.len)) & 0xFF;

	if (rxd_me->frame.chksum != msg_ckv)
		goto __END_HANDLE; /*非协议帧数据,直接结束处理*/

	switch (rxd_me->frame.cmd)
	{
	case EQ_SHK_SET_CMD: /*设备握手指令*/
		if (rxd_me->frame.udat[0] & 0x1)
		{
			/*SET THE COM IS CNNING STATUS*/
			dev_com_status_set(CNN_STATE);
			/*BATT VOLTAGE INFO*/
			union
			{
				float volt;
				struct
				{
					unsigned char dat[4];
				};
			} batt;
			batt.volt = BATT_VOLTAGE_CONVERT(gb_adc_value) + 0.7F;
			shk_inf[12] = batt.dat[0];
			shk_inf[11] = batt.dat[1];
			shk_inf[10] = batt.dat[2];
			shk_inf[9] = batt.dat[3];
			/*GET SN INFO*/
			dev_sn_code_read_from_flash(&shk_inf[4], DEV_SN_INF_LEN); //读取设备SN码
			/*GET VERSION INFO*/
			// V01.00.13
			shk_inf[3] = *(volatile unsigned int *)(GD32_FLASH_APP_FILE_INF_START_ADDR + 0x0A); // 13
			shk_inf[2] = *(volatile unsigned int *)(GD32_FLASH_APP_FILE_INF_START_ADDR + 0x09); // 00
			shk_inf[1] = *(volatile unsigned int *)(GD32_FLASH_APP_FILE_INF_START_ADDR + 0x08); // 01
			/*OK*/
			shk_inf[0] = 0x80; /*回复标志*/
			xx_dev_msg_make_and_send(rxd_me->frame.cmd, sizeof(shk_inf), (unsigned char *)&shk_inf[0], serial_write);
			goto __END_HANDLE;
		}
		else
		{
			dev_com_status_set(DISCNN_STATE);
			goto __ACK_HANDLE;
		}
		break;
	default:
		goto __END_HANDLE;
	}
__ACK_HANDLE: //设备回应
	xx_dev_msg_make_and_send(rxd_me->frame.cmd, sizeof(ack_code), &ack_code, serial_write);
__END_HANDLE: //清除串口接收数据缓存
	serial_flush(0);
	dat_len = 0;
	return 0;
}


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/51183.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

hadoop3.x学习(一)--安装与环境配置

一、hadoop的组成 hadoop1.x&#xff1a;Commons、HDFS&#xff08;数据存储&#xff09;、MapReduce&#xff08;资源调度计算&#xff09;hadoop2.x:Commons、HDFS&#xff08;数据存储&#xff09;、MapReduce&#xff08;计算&#xff09;、Yarn(资源调度) 1.1 HDFS 分布式…

【电商项目实战】个人资料(详细篇)

&#x1f341;博客主页&#xff1a;&#x1f449;不会压弯的小飞侠 ✨欢迎关注&#xff1a;&#x1f449;点赞&#x1f44d;收藏⭐留言✒ ✨系列专栏&#xff1a;&#x1f449;SpringBoot电商项目实战 ✨学习社区&#xff1a; &#x1f449;不会压弯的小飞侠 ✨知足上进&#x…

Linear Model 线性模型

文章目录1、Linear Model 线性模型1.1 问题引入1.2 选择模型1.3 损失 Loss1.4 均方误差 MSE1.5 代码1.6 更换模型1、Linear Model 线性模型 B站视频教程传送门&#xff1a;PyTorch深度学习实践 - 线性模型 1.1 问题引入 假设学生在期末考试中得到y分&#xff0c;如果他们花了…

【正点原子FPGA连载】第二十五章 双路高速AD实验 摘自【正点原子】DFZU2EG/4EV MPSoC 之FPGA开发指南V1.0

1&#xff09;实验平台&#xff1a;正点原子MPSoC开发板 2&#xff09;平台购买地址&#xff1a;https://detail.tmall.com/item.htm?id692450874670 3&#xff09;全套实验源码手册视频下载地址&#xff1a; http://www.openedv.com/thread-340252-1-1.html 第二十五章 双路…

干货 | 读懂这篇文,玩游戏还会卡顿?

玩游戏的时候最怕的就是卡顿。排位赛的紧急关头&#xff0c;明明马上就能上一段位&#xff0c;却因为卡顿导致给对方送人头。还把对手送上了王者。引起队友骂声一片。作为测试工程师的你&#xff0c;可以忍&#xff1f; 卡顿测试也是专项测试里的一种&#xff0c;更多精彩测试内…

【学习笔记】深度学习入门:基于Python的理论与实现-Python入门与感知机

CONTENTS一、Python入门1.1 NumPy1.2 Matplotlib二、感知机2.1 感知机是什么2.2 简单逻辑电路2.3 感知机的实现2.4 感知机的局限性2.5 多层感知机一、Python入门 1.1 NumPy 在深度学习的实现中&#xff0c;经常出现数组和矩阵的计算。NumPy的数组类&#xff08;numpy.array&a…

C语言函数调用的过程图解深入剖析

希望是美好的&#xff0c;也许是人间至善&#xff0c;而美好的事物永不消逝。——《肖申克的救赎》 目录 1、什么是函数栈帧&#xff1f; 2、理解函数栈帧能解决什么问题 3、函数栈帧是什么 3.1什么是栈&#xff1f; 3.2认识寄存器和汇编指令 4、函数调用的整个过程 5、…

LBA逻辑区块地址

现在很多硬盘采用同密度盘片&#xff0c;意味着内外磁道上的扇区数量不同&#xff0c;扇区数量增加&#xff0c;容量增加&#xff0c;3D很难定位寻址&#xff0c;出现了新的寻址模式&#xff1a;LBA(Logical Block Addressing)。在LBA地址中&#xff0c;地址不再表示实际硬盘的…

Mysql 并发多版本控制MVCC

什么是MVCC MVCC&#xff0c;全称Multi-Version Concurrency Control&#xff0c;即多版本并发控制。MVCC是一种并发控制的方法&#xff0c;一般在数据库管理系统中&#xff0c;实现对数据库的并发访问&#xff0c;在编程语言中实现事务内存。 一般情况下我们使用mysql数据库的…

Prometheus 采集vCenter7监控数据

前提要求 安装docker&#xff0c;docker-compose创建vmware_exporter目录 mkdir -p /vmware_exporter 创建基于docker部署vmware_exporter脚本 VSPHERE_HOST: "vCenter 管理地址" VSPHERE_IGNORE_SSL: "True" VSPHERE_USER: "administratorvsphere…

[附源码]计算机毕业设计springboot求职招聘网站

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

信创平台:查询CPU,内存等命令

信创平台&#xff1a;海光、鲲鹏服务器查询CPU,内存等命令 #1、查看操作系统(统信操作系统) 海光查询操作系统&#xff1a; cat /etc/os-release查看操作系统 cat /etc/os-version查看操作系统版本 鲲鹏查询操作系统&#xff1a;cat /etc/system-release Kylin Linux Adva…

Python图像处理【3】Python图像处理库应用

Python图像处理库应用0. 前言1. 将 RGB 图像转换为灰度图像算法1.1 算法原理3.2 算法实现2. 使用 PIL 库计算图像差异2.1 算法原理2.2 算法实现3. 使用 Scikit-image 转换图像色彩空间3.1 将 RGB 图像转换至 HSV 色彩空间3.2 将 RGB 图像转换至 YUV 色彩空间4. 用 OpenCV 调整图…

html学习笔记

1.在idea里右键创建html文件 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title> </head> <body></body> </html>在谷歌浏览器中输入chrome://version可以看…

【学习笔记】深度学习入门:基于Python的理论与实现-误差反向传播法

CONTENTS五、误差反向传播法5.1 计算图5.2 链式法则5.3 反向传播5.4 简单层的实现5.5 激活函数层的实现5.6 Affine/Softmax层的实现5.7 误差反向传播法的实现五、误差反向传播法 5.1 计算图 先引入一个很简单的问题&#xff1a;在超市买了222个100100100元一个的苹果&#xf…

[附源码]JAVA毕业设计个人饮食营养管理信息系统(系统+LW)

[附源码]JAVA毕业设计个人饮食营养管理信息系统&#xff08;系统LW&#xff09; 目运行 环境项配置&#xff1a; Jdk1.8 Tomcat8.5 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 …

云原生|kubernetes|kubernetes集群使用私有镜像仓库拉取镜像(harbor或者官方的registry私有镜像仓库)

前言&#xff1a; 在实际的生产中&#xff0c;我们可能会有许多的由开发制作的docker镜像&#xff0c;这也就造成使用这些镜像需要打包成tar文件&#xff0c;然后上传到服务器内然后在导入并使用&#xff0c;但&#xff0c;kubernetes节点很多&#xff0c;有时候并不是明确的要…

13.前端笔记-CSS-盒子样式应用(圆角、阴影)

1、圆角边框 border-radius属性&#xff0c;用于设置元素的外边框圆角 原理&#xff1a;(椭)圆和矩形的两条边相切&#xff08;圆的半径就是length&#xff09;&#xff0c;形成圆角效果 属性&#xff1a; border-top-left-radius;左上 border-top-right-radius:右上 border…

B-神经网络模型复杂度分析

B-神经网络模型复杂度分析 前言一&#xff0c;模型计算量分析 卷积层 FLOPs 计算全连接层的 FLOPs 计算二&#xff0c;模型参数量分析 卷积层参数量BN 层参数量全连接层参数量三&#xff0c;模型内存访问代价计算 卷积层 MAC 计算四&#xff0c;一些概念 双精度、单精度和半精…

数苹果-第12届蓝桥杯Scratch选拔赛真题精选

[导读]&#xff1a;超平老师计划推出Scratch蓝桥杯真题解析100讲&#xff0c;这是超平老师解读Scratch蓝桥真题系列的第91讲。 蓝桥杯选拔赛每一届都要举行4~5次&#xff0c;和省赛、国赛相比&#xff0c;题目要简单不少&#xff0c;再加上篇幅有限&#xff0c;因此我精挑细选…