AE(自动编码器)与VAE(变分自动编码器)的区别和联系?

news2024/11/23 18:35:13

他们各自的概念看以下链接就可以了:https://blog.csdn.net/weixin_43135178/category_11543123.html

 这里主要谈一下他们的区别?


先说结论:

  • VAE是AE的升级版,VAE也可以被看作是一种特殊的AE
  • AE主要用于数据的压缩与还原,VAE主要用于生成
  • AE是将数据映直接映射为数值code(确定的数值),而VAE是先将数据映射为分布,再从分布中采样得到数值code。
  • 损失函数和优化目标不同


AE(Auto Encoder, 自动编码器)

AE的结构

如上图所示,自动编码器主要由两部分组成:编码器(Encoder)和解码器(Decoder)。编码器和解码器可以看作是两个函数,一个用于将高维输入(如图片)映射为低维编码(code),另一个用于将低维编码(code)映射为高维输出(如生成的图片)。这两个函数可以是任意形式,但在深度学习中,我们用神经网络去学习这两个函数。

这时候我们只要拿出Decoder部分,随机生成一个code然后输入,就可以得到一张生成的图像。但实际上这样的生成效果并不好(下面解释原因),因此AE多用于数据压缩,而数据生成则使用下面所介绍的VAE更好。

AE的缺陷

由上面介绍可以看出,AE的Encoder是将图片映射成“数值编码”,Decoder是将“数值编码”映射成图片。这样存在的问题是,在训练过程中,随着不断降低输入图片与输出图片之间的误差,模型会过拟合,泛化性能不好。也就是说对于一个训练好的AE,输入某个图片,就只会将其编码为某个确定的code,输入某个确定的code就只会输出某个确定的图片,并且如果这个code来自于没见过的图片,那么生成的图片也不会好。下面举个例子来说明:

假设我们训练好的AE将“新月”图片encode成code=1(这里假设code只有1维),将其decode能得到“新月”的图片;将“满月”encode成code=10,同样将其decode能得到“满月”图片。这时候如果我们给AE一个code=5,我们希望是能得到“半月”的图片,但由于之前训练时并没有将“半月”的图片编码,或者将一张非月亮的图片编码为5,那么我们就不太可能得到“半月”的图片。因此AE多用于数据的压缩和恢复,用于数据生成时效果并不理想。

如何解决AE的问题呢?

这时候我们转变思路,不将图片映射成“数值编码”,而将其映射成“分布”。还是刚刚的例子,我们将“新月”图片映射成μ=1的正态分布,那么就相当于在1附近加了噪声,此时不仅1表示“新月”,1附近的数值也表示“新月”,只是1的时候最像“新月”。将"满月"映射成μ=10的正态分布,10的附近也都表示“满月”。那么code=5时,就同时拥有了“新月”和“满月”的特点,那么这时候decode出来的大概率就是“半月”了。这就是VAE的思想。

VAE(Variational Auto-Encoder, 变分自动编码器)

VAE的结构

小结

  • AE主要用于数据的压缩与还原,在生成数据上使用VAE。
  • AE是将数据映直接映射为数值code,而VAE是先将数据映射为分布,再从分布中采样得到数值code。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/508652.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

redisson中的分布式锁解读

概述 Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。它不仅 提供了一系列的分布式的Java常用对象,还提供了许多分布式服务。其中包括(BitSet, Set, Multimap, SortedSet, Map, List, Queue, BlockingQueue,…

【电机应用控制】——FOC基础理论针对无刷电机360°无死角磁场矢量控制

目录 前言 一、FOC简介 1、概述 2、框图详解 二、FOC控制核心—坐标变换 1、CLARKE变换 2、PARK变换&反变换 三、FOC闭环回路 四、SVPWM解析 总结 前言 声明:学习笔记来自正点原子B站教程,根据自己理解进行精简总结,仅供学习…

『python爬虫』16. 多线程与多进程(保姆级图文)

目录 多线程1. 什么是多线程?2. 串行模式3. 多线程3.1 多线程方法写法3.2 多线程方法带参数3.3 多线程类写法 多进程1. 什么是多进程 欢迎关注 『python爬虫』 专栏,持续更新中 欢迎关注 『python爬虫』 专栏,持续更新中 多线程 1. 什么是多…

优化Docker Compose日志输出,加速容器化应用的轻松部署

摘要: 在使用 Docker Compose 部署容器化应用程序时,优化日志输出对于提升效率和管理便利性至关重要。本文将介绍如何优化 Docker Compose 日志输出,以加速容器化应用的轻松部署过程。 优化操作 当我们使用 Docker Compose 部署容器化应用程…

【Queue新技法】用双数组实现一个队列 C++

目录 1 常规的队列构建2 加入一些限制2-1形式化说明 附录0 双数组或双链表实现队列1 单链表与循环缓冲区实现队列3 参考资料 1 常规的队列构建 到火车站办理退票,排队的人构成队列。注意到有两个关键动作: 入队,即自觉站到队伍的末尾。出队&…

一篇文章搞定《ViewPage2离屏加载》

------《ViewPage2离屏加载》 前言离屏加载是什么OffscreenPageLimit设置OffscreenPageLimit表现OffscreenPageLimit值为1OffscreenPageLimit值为3 OffscreenPageLimit值取多大比较合适 前言 这里就不讲ViewPage了,买新不买旧,用新不用旧。 但是会将Vie…

Power BI: 表格显示切片器选中时间之前的数据

例如下面的例子,Year List表和Caleadar表是1对多的关联关系。 Caleadar表: Caleadar VAR StartYear YEAR(NOW())-5 VAR EndYear YEAR(NOW())5 RETURN ADDCOLUMNS (CALENDAR (DATE(StartYear,1,1), DATE(EndYear,12,31)),"Year", YEAR ([…

【设计模式】| 修炼内功 | 23种设计模式——工厂方法模式(含抽象)

设计模式如同织锦之艺术,精心构筑,展示优美。 学习设计模式,犹如追逐清晨的曙光,扉页掀开了人生的新篇章。当你学会设计模式的奥秘,就如同走进了灯火通明的城市,丰富多彩的建筑,让你大开眼界&am…

30个最常用的空间SQL用例

在开始使用空间 SQL 时,至少对我而言,最大的挑战之一是拥有一个快速简便的参考,以将你当前的 GIS 工作流转换为 SQL。 有许多令人惊叹的资源可以扩展这方面的知识,但本指南旨在成为一本真正简单的食谱,以开始将你当前的…

从零开始的强化学习入门学习路线

强化学习是机器学习领域中的一个分支,它是指智能体通过与环境的交互来学习如何采取最佳行动以最大化奖励信号的过程。强化学习在许多领域都有广泛的应用,如游戏、自动驾驶和机器人控制等。如果你对强化学习感兴趣,下面是一个入门强化学习的学…

SequoiaDB分布式数据库2023.4月刊

本月看点速览 赋能产业升级,荣获新睿之星 聚焦金融,进一步探索非结构化数据价值释放 再获肯定,入选2023年中国最佳信创厂商入围名单 青杉计划2023已开启,一起攀登更高的“杉” 赋能产业升级,荣获新睿之星 4月18日…

PyTorch典型函数之gather

PyTorch典型函数之gather 作用描述函数详解典型应用场景(1) 深度强化学习中计算损失函数 参考链接 作用描述 如上图所示,假如我们有一个Tensor A(图左),要从A中提取一部分元素组成Tensor B(图右)&#xff0…

7.外观模式C++用法示例

外观模式 一.外观模式1.原理2.特点3.外观模式与装饰器模式的异同4.应用场景C程序示例 一.外观模式 外观模式(Facade Pattern)是一种结构型设计模式,它提供了一个简单的接口,隐藏了一个或多个复杂的子系统的复杂性,并使…

图嵌入表示学习—Node Embeddings随机游走

Random Walk Approaches for Node Embeddings 一、随机游走基本概念 想象一个醉汉在图中随机的行走,其中走过的节点路径就是一个随机游走序列。 随机行走可以采取不同的策略,如行走的方向、每次行走的长度等。 二、图机器学习与NLP的关系 从图与NLP的…

posix线程的优先级测试

如果创建的线程不够多&#xff0c;有些问题是体现不出来的。 优先级打印&#xff1a; 测试目的&#xff1a;输出三种调度模式下的最大优先级和最小优先级 #include <stdio.h> #include <sys/socket.h> #include <sys/types.h> #include <fcntl.h> #…

Kubernetes_容器网络_01_Docker网络原理(二)

文章目录 一、前言二、被隔离的Docker容器三、网桥Bridge四、VethPair网络对五、统一宿主机上的两个Container容器通信六、宿主机访问其上的容器七、宿主机上的容器访问另一个宿主机八、尾声 一、前言 二、被隔离的Docker容器 Linux 网络&#xff0c;就包括&#xff1a;网卡&…

技术选型对比- RPC(Feign VS Dubbo)

协议 Dubbo 支持多传输协议: Dubbo、Rmi、http,可灵活配置。默认的Dubbo协议&#xff1a;利用Netty&#xff0c;TCP传输&#xff0c;单一、异步、长连接&#xff0c;适合数据量小(传送数据小&#xff0c;不然影响带宽&#xff0c;响应速度)、高并发和服务提供者远远少于消费者…

UnityWebGL+阿里云服务器+Apache完成项目搭建展示

一、服务器相关 Step1:租借一台阿里云服务器 我自己租借了一台北京的ECS服务器&#xff0c;有免费一年的活动&#xff0c;1 vCPU 2 GiB&#xff0c;我自己选择的Ubuntu系统&#xff0c;也可以选择Windows系统 Step2:进入远程连接 进入自己的服务器实例后&#xff0c;点击远程…

vue+elementui+nodejs机票航空飞机航班查询与推荐

语言 node.js 框架&#xff1a;Express 前端:Vue.js 数据库&#xff1a;mysql 数据库工具&#xff1a;Navicat 开发软件&#xff1a;VScode )本系统主要是为旅客提供更为便利的机票预定方式&#xff0c;同时提高民航的预定机票的工作效率。通过网络平台实现信息化和网络化&am…

关于Android的性能优化,主要是针对哪些方面的问题进行优化

前言 我们在开发Android的时候&#xff0c;经常会遇到一些性能问题&#xff1b;例如&#xff1a;卡顿、无响应&#xff0c;崩溃等&#xff0c;当然&#xff0c;这些问题为我们可以从日志来进行追踪&#xff0c;尽可能避免此类问题的发生&#xff0c;要解决这些问题&#xff0c…