从WebRtc学习RTP协议

news2024/9/26 1:24:23

1、TCP为何不适用于实时音视频

可靠性是以牺牲实时性为代价的。按照TCP原理,当出现极端网络情况时,理论上每个包的时延可达到秒级以上,而且这种时延是不断叠加的。这对于音视频实时通信来说是不可接受的。

TCP为了实现数据传输的可靠性,采用的是“发送→确认→丢包→重传”这样一套机制。而且为了增加网络的吞吐量,还采用了延迟确认和Nagle算法(将多个小包组成一个大包发送,组合包的大小不超过网络最大传输单元)

为了增加网络的吞吐量,接收端不必每收到一个包就确认一次,而是对一段时间内收到的所有数据集体确认一次即可。为了实现该功能,TCP通常会在接收端启动一个定时器。定时器的时间间隔一般设置为200ms,即每隔200ms确认一次接收到的数据。这就是延迟确认机制。‘

除此之外,TCP在发送端也启动了一个定时器,不过该定时器的功能不是发送确认消息,而是用来判别是否有丢包的情况。发送端定时器的时长为一个RTO(RTO(Retransmission Timeout),重传超时时长。其值约等于RTT的平均值,每次超时后以指数级增长。RTT表示一个数据包从发送端到接收端,然后再回到发送端所用的时长)如果在定时器超时后仍然没有收到包的确认消息,则认为包丢失了,需要发送端重发丢失的包。这就是TCP的丢包重传机制。

假如接收端发送的确认消息丢失了,按TCP的协议规则,通信双方会怎么做呢?首先,发送端只有等到定时器超时后,才能发现该包丢失了。确认丢包后,发送端会将前面所有未确认的包重发一遍。如果在收到数据后,接收端发送的确认消息又丢失了,那么发送端还要等到定时器超时后才能知道包丢失了。因此,在遇到这种极端网络的情况下,TCP传输的时延要累加很多,这种时延是不可控的。

2、UDP->RTP

UDP没有这套逻辑,所以实时性最高。WebRTC通过NACK、FEC、Jitter Bufer以及NetEQ技术既可以解决丢包和抖动问题,又不会产生影响服务质量的时延。

UDP传输一些有前后逻辑关系的数据时有缺陷,所以在UDP之上的应用层上使用RTP传输音视频数据

3、RTP协议结构

保持有序:Sequence Number

我们希望在使用RTP传输音视频数据时,一旦有数据丢失,可以快速定位是哪个数据包丢失了。

如果给每个发送的数据包都打上一个编号,并且编号是连续的,那么,接收端就可以很容易地判断出哪些包丢失了。在RTP头中,有一个专门记录该编号的字段,称作Sequence Number。在发送端,每产生一个RTP包,其Sequence Number字段中的值就被自动加1,以保证每个包的编号唯一且连续。当接收端收到RTP包时,会对Sequence Number字段进行检查,如果发现Sequence Number不连续了,就说明有包丢失或乱序了。

区分不同类型数据:PayloadType

我们在做网络应用开发时,通常会使用同一个端口传输不同类型的数据,如音视频数据。但接收端是如何区分出不同类型的数据的?RTP在其协议头中设置了PT(PayloadType)字段.比如VP8的PT一般为96,而Opus的PT一般为111

区分不同源数据包:SSRC

同一个端口不仅可以同时传输不同类型的数据包,还可以传输同一类型但不同源的数据包。

流媒体服务就可以将多个不同源(参与人)的视频通过同一个端口发送给客户端。那么客户端(接收端)又是如何将不同源的数据区分出来的呢?这就要说到RTP中另一个字段SSRC了。

RTP要求所有不同的源的数据流之间可以通过SSRC字段进行区分,且每个源的SSRC必须唯一。

每个SSRC所代表的数据流的Sequence Number都是单独计数的,如下图:

完整的协议格式如下:

V(Version)字段,占2位,表示RTP的版本号,现在使用的都是第2个版本,所以该域固定为2。

P(Padding)字段,占1位,表示RTP包是否有填充值。为1时表示有填充,填充以字节为单位。一般数据加密时需要固定大小的数据块,此时需要将该位置1。

X(eXtension)字段,占1位,表示是否有扩展头。如果有扩展头,扩展头会放在CSRC之后。扩展头主要用于携带一些附加信息。

CC(CSRCCount)字段,占4位,记录了CSRS标识符的个数。每个CSRC占4字节,如果CC=2,则表示有两个CSRC,共占8字节。

M(Marker)字段,其含义是由配置文件决定的,一般情况下用于标识边界。比如一帧H264被分成多个包发送,那么最后一个包的M位就会被置位,表示这一帧数据结束了。

timestamp字段,占4字节,用于记录该包产生的时间,主要用于组包和音视频同步。

CSRC字段,指该RTP包中的数据是由哪些源贡献的。比如混音数据是由三个音频混成的,那么这三个音频源都会被记录在CSRS列表中。

4、Jittbuffer

介绍一下使用RTP消除包抖动的一个简要过程:

对于WebRTC而言,其在接收RTP包时,会为之创建一个接收队列来消除包抖动。一开始,队列中只收到了100、101、102和104号包。由于103号包还没到,所以无法将100∼104号包组成一帧数据。103号包没有到有两种可能的原因:一种原因是103号包丢失了;另一种原因是网络抖动导致包乱序了。判断缓冲队列有没有满。如果缓冲队列满了,就说明包真的丢失了。对于103号包来说,由于现在缓冲队

列还不满,因此该包处于待定状态。同理,当107号包到达时,105号包和106号包也处于待定状态。

很快103号包来了,通过对其RTP头中Sequence Number字段的计算,它会被插到队列中对应的空缺位置,此时100∼104号包连成了一串。又由于104号包上有M标记,因此可以将这几个RTP包组成一个完整的帧。接下来,100∼104号包将从缓冲队列中弹出,交由组帧模块处理,空出的位置可以继续接收新包。WebRTC也是通过类似的方法从网络上将一个个RTP包接收下来。

WebRTC中解决RTP包抖动的缓冲队列就是我们通常所说的JitterBufer。

5、RTP扩展头

当X被置位1,说明有扩展头

RTP扩展头由三部分组成,分别为profile、length以及headerex tension。

在RFC5285中定义了两种profile,分别是**{0xBE,0xDE}和{0x10,0x0X}**(分别代表存放在headerextension中的两种不同的数据格式,即one-byte-header和two-byte-header)

接收端解析RTP扩展头时,通过profile来区分header extension中的内容该如何解析。

length字段表示扩展头所携带的header extension的个数。如果length为4,表示有4个headerextension;

header extension字段是扩展头信息,以4字节为单位,其具体含义由profile决定。

one-byte-header格式:

存放在扩展头header extension字段中的数据,由一个字节的Header和N字节的Body组成,而Header又由4位的ID和4位的len组成。注意,length的值为跟在Header后面的数据(以字节为单位)长度减1。

第一个one-byte-header的length值为0,其数据长度为(0+1)=1字节;第二个one-byte-header(的length值为1,其数据占(1+1)=2字节;第三个one-byte-header的length值为3,其数据占(3+1)=4字节。此外,由于扩展头要保持4字节对齐,所以最后两个字节是填充字节,设置为0。

two-byte-header格式:

Header部分由两个字节组成,第一个字节表示ID,第二个字节表示长度,two-byte-header中length存放的是实际长度。

通过上面的介绍我们知道RTP扩展头有三个要点。一是RTP标准头中的X位,该位置1时,RTP中才会有扩展头。二是扩展头中的profile字段指明了扩展头中数据的格式。如果profile为0xBEDE,则说明使用的扩展头格式为one-byte-header;如果profile为0x100X(X表示任意值),则说明使用的扩展头格式为two-byte-header。三是one-byte-header与two-byte-header的区别。如果ID和len放在一个字节中,说明它是one-byte-header格式;如果ID和len放在两个字节中,说明它是two-byte-header格式。

6、RTP填充数据

RTP头中的P位用于标识RTP包中是否有填充数据。如果P位为1,说明RTP包中含有填充数据。

当RTP包中包含有填充数据时,其数据包的最后一个字节记录着包中填充字节的个数,即图中的Padding Size部分。

如果Padding Size为5,说明RTP包中共有5个填充字节,其中包括它自己。在解析RTP Payload部分之前,应将填充部分去掉。去掉填充字节的算法也非常简单,首先读取RTP包的最后一个字节,取出填充字节数,然后从最后一个字节算起,将其前面的Padding Size个字节丢掉即可。

原文链接:[从WebRtc学习RTP协议_rtp payload type_拾牙慧者的博客-CSDN博客](https://link.zhihu.com/?target=https%3A//blog.csdn.net/qq_42604176/article/details/122868578)

★文末名片可以免费领取音视频开发学习资料,内容包括(FFmpeg ,webRTC ,rtmp ,hls ,rtsp ,ffplay ,srs)以及音视频学习路线图等等。

见下方!↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/382254.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【2223sW2】LOG1

写在前面 好好学习,走出宿舍,走向毕设! 一些心路历程记录,很少有代码出现 因为鬼知道哪条代码到时候变成毕设的一部分了咧,还是不要给自己的查重挖坑罢了 23.2.27 文件批量重命名 为了给学姐先整出来一批训练数据&…

Element中树形控件在项目中的实际应用

文章目录1、使用目的2、官网组件3、组合使用组件案例4、在项目中实际应用4.1 组合组件的使用4.1.2 代码落地4.1.3 后台接口数据4.1.4 实际效果官网连接直达&#xff1a;Tree树形控件的使用 1、使用目的 用清晰的层级结构展示信息&#xff0c;可展开或折叠。 2、官网组件 <…

【YoloV5】Deepin系统使用Gpu进行YoloV5训练

Deepin系统使用Gpu进行YoloV5训练&#xff0c;显卡RTX30701.配置环境1.1英伟达的驱动安装2. pytorch安装2.1pytorch环境配置2.2 验证Gpu3.使用Yolo5进行Gpu模型训练3.1 准备需要训练的数据集和标注数据集1.配置环境 1.1英伟达的驱动安装 查看当前自己系统的显卡信息 lspci |…

paddleInfer

一、安装GCC 5.4https://blog.csdn.net/weixin_64064486/article/details/123940266二、安装pycudahttps://blog.csdn.net/zong596568821xp/article/details/86077553/更改的地方是&#xff0c;安装pycuda用的是&#xff1a;pip install pycuda三、安装TensorRT 1、TensorRT下载…

DataGear 制作基于Vue前端框架渲染的数据可视化看板

DataGear 在4.3.0版本新增了dg-dashboard-code特性&#xff0c;并在4.4.0版本进行了改进和增强&#xff0c;结合看板API&#xff0c;可以很方便地制作完全由Vue、React等前端框架渲染的数据可视化看板。 本文基于Vue2、Element UI前端框架的<el-container>、<el-head…

对“车辆销售配置器”的认识与理解

概述 中国汽车市场转为存量阶段后&#xff0c;各车企开始从”以产品为中心“转型到”以客户为中心“&#xff0c;产品的个性化配置需求日益丰富。随着竞争的加剧&#xff0c;车企们不仅要提供出色的产品&#xff0c;而且需要提供更加个性化的产品配置和服务&#xff0c;例如&am…

【Hello Linux】程序地址空间

作者&#xff1a;小萌新 专栏&#xff1a;Linux 作者简介&#xff1a;大二学生 希望能和大家一起进步&#xff01; 本篇博客简介&#xff1a;简单介绍下进程地址空间 程序地址空间程序地址空间语言中的程序地址空间矛盾系统中的程序地址空间为什么要有进程地址空间思维导图总结…

Java经典面试题——String、StringBuffer、StringBuilder有什么区别?

典型回答 String 是Java 语言非常基础和重要的类&#xff0c;提供了构造和管理字符串的各种基本逻辑。它是典型的 Immutable 类&#xff0c;被声明成为 final class &#xff0c;所有属性也都是 final 的。也由于它的不可变性&#xff0c;类似拼接、裁剪字符串等动作&#xff…

机器学习100天(三十五):035 贝叶斯公式

《机器学习100天》完整目录:目录 机器学习100天,今天讲的是:贝叶斯公式! 好了,上一节介绍完先验概率、后验概率、联合概率、全概率后,我们来看这样一个问题:如果我现在挑到了一个瓜蒂脱落的瓜,则该瓜是好瓜的概率多大? 显然,这是一个计算后验概率的问题,根据我们之…

基于DSP的三相开关霍尔永磁同步电机控制

0 前言 本文本应该是一篇 记录我使用DSP28377D控制一个基于三相开关霍尔传感器的高速永磁同步电机全过程的长文&#xff0c;但大部分零散的知识点我都已经写成单独的博客了&#xff0c;所以本文更像是一个知识框架的梳理。本文最终目的是实现高速PMSM的电流-速度双闭环&#x…

[LK光流法,disflow using Dense Inverse Search, VariationalRefinement变分优化 原理和代码]

文章目录1.Fast Optical Flow using Dense Inverse Search1.1 W的含义&#xff1a;1.2 LK光流模型1.3 LK光流模型求解&#xff08;不含迭代&#xff09;1.4 LK光流模型迭代求解1.5 dis_flow方法中的 LK光流模型1.6 disflow代码分析2.0 disflow中的VariationalRefinement方法2.0…

大佬们都说tcp有黏包的问题,tcp却说:我冤枉!

相关参考添加链接描述 相关参考 什么是tcp TCP,全称Transmission Control Protocol&#xff0c;是一种传输控制协议&#xff0c;TCP协议也是计算机网络中非常复杂的一个协议 tcp的特点 tcp是面向连接的协议tcp是端到端的链接tcp提供可靠的传输服务tcp协议提供双工通信tcp是…

【计算机考研408】快速排序的趟数问题 + PAT 甲级 7-2 The Second Run of Quicksort

前言 该题还未加入PAT甲级题库中&#xff0c;可以通过购买2022年秋季甲级考试进行答题&#xff0c;纯考研题改编 快速排序 常考的知识点 快速排序是基于分治法快速排序是所有内部排序算法中平均性能最优的排序算法快速排序是一种不稳定的排序算法快速排序算法中&#xff0c…

异步Buck和同步Buck的特点

1 介绍 随着时代的发展&#xff0c;工业&#xff0c;车载&#xff0c;通信&#xff0c;消费类等产品都提出了小型化&#xff0c;智能化的需求。相应的&#xff0c;对于这些系统中的电源模块提出了小型化的要求。目前&#xff0c;市场上依然存在很多异步Buck电源管理芯片使用的场…

atomic 原子操作

atomic 原子操作前言atomic_t定义内核中的实现armv7的实现armv8的实现Exclusive monitor实现所处的位置External exclusive monitorAtomic指令的支持QA前言 修改一个变量会经过读、修改、写的操作序列。但有时该操作序列在执行完毕前会被其他任务或事件打断。 比如在多CPU体系…

python基础学习3--切片(slice)

在python中&#xff0c;切片&#xff08;slice&#xff09;是对序列型对象&#xff08;如list,string,tuple)的一种高级索引方法。普通索引只取出序列一个下标对应的元素&#xff0c;而切片取出序列中一个范围对应的元素&#xff0c;这里的范围不是狭义上的连续片段。通俗一点就…

CLion Debug 调试 Makefile 构建的 C 语言程序断点不起作用

最近在研究 jattach&#xff0c;打算在本地调试项目&#xff0c;发现 CLion 可以正常编译运行代码&#xff0c;却无法断点 Debug。由于笔者对 C/C 项目不熟悉&#xff0c;在此记录研究过程中遇到的一些基本问题与解决方法。 文章目录解决方式尝试过的手段【未解决】找 Native D…

RIG Exploit Kit 仍然通过 IE 感染企业用户

RIG Exploit Kit 正处于最成功的时期&#xff0c;每天尝试大约 2000 次入侵并在大约 30% 的案例中成功&#xff0c;这是该服务长期运行历史中的最高比率。 通过利用相对较旧的 Internet Explorer 漏洞&#xff0c;RIG EK 已被发现分发各种恶意软件系列&#xff0c;包括 Dridex…

内科大机器学习期末重点

1. 什么是机器学习 &#xff08;由于图床原因导致部分图片错位&#xff0c;可以借鉴着看&#xff09; 语音识别算法推荐人脸识别垃圾邮件过滤贷款资格审核 2. 学习的概念 与经验有关 学习可以改善系统性能 学习是一个有反馈的信息处理与控制过程 3. 学习分类&#xff1a…

996的压力下,程序员还有时间做副业吗?

996怎么搞副业&#xff1f; 这个问题其实蛮奇怪的&#xff1a;996的压力下&#xff0c;怎么会还想着搞副业呢&#xff1f; 996还想搞副业的原因有哪些&#xff1f; 大家对于996应该都不陌生&#xff0c;总结就是一个字&#xff1a;忙。 996的工作性质就是加班&#xff0c;就…