Redis 主从库如何实现数据一致?

news2024/11/15 8:25:00

目录

1、主从库间如何进行第一次同步?

2、主从级联模式分担全量复制时的主库压力

3、主从库间网络断了怎么办?

总结


// 好的文章,值得反复去读

        Redis 具有高可靠性,这里有两层含义:一是数据尽量少丢失,二是服务尽量少中断。AOF 和 RDB 保证了前者,而对于后者,Redis 的做法就是增加副本冗余量,将一份数据同时保存在多个实例上。即使有一个实例出现了故障,需要过一段时间才能恢复,其他实例也可以对外提供服务,不会影响业务使用。

        多实例保存同一份数据,听起来好像很不错,但是,我们必须要考虑一个问题:这么多副本,它们之间的数据如何保持一致呢?数据读写操作可以发给所有的实例吗// 主从读写分离

        实际上,Redis 提供了主从库模式,以保证数据副本的一致,主从库之间采用的是读写分离的方式。

  • 读操作:主库、从库都可以接收;
  • 写操作:首先到主库执行,然后,主库将写操作同步给从库。

        那么,为什么要采用读写分离的方式呢?

        你可以设想一下,如果在上图中,不管是主库还是从库,都能接收客户端的写操作,那么,一个直接的问题就是:如果客户端对同一个数据(例如 k1)前后修改了三次,每一次的修改请求都发送到不同的实例上,在不同的实例上执行,那么,这个数据在这三个实例上的副本就不一致了(分别是 v1、v2 和 v3)。在读取这个数据的时候,就可能读取到旧的值。 

        如果我们非要保持这个数据在三个实例上一致,就要涉及到加锁、实例间协商是否完成修改等一系列操作,但这会带来巨额的开销,当然是不太能接受的。// 为什么要读写分离的原因

        而主从库模式一旦采用了读写分离,所有数据的修改只会在主库上进行,不用协调三个实例。主库有了最新的数据后,会同步给从库,这样,主从库的数据就是一致的。// 主库写,从库同步

        那么,主从库同步是如何完成的呢?主库数据是一次性传给从库,还是分批同步?要是主从库间的网络断连了,数据还能保持一致吗?这篇文章,我们聊聊主从库同步的原理,以及应对网络断连风险的方案。// 解决高可用问题

        好了,我们先来看看主从库间的第一次同步是如何进行的,这也是 Redis 实例建立主从库模式后的规定动作。

1、主从库间如何进行第一次同步?

        当我们启动多个 Redis 实例的时候,它们相互之间就可以通过 replicaof(Redis 5.0 之前使用 slaveof)命令形成主库和从库的关系,之后会按照三个阶段完成数据的第一次同步。

        例如,现在有实例 1(ip:172.16.19.3)和实例 2(ip:172.16.19.5),我们在实例 2 上执行以下这个命令后,实例 2 就变成了实例 1 的从库,并从实例 1 上复制数据:// 一条命令即可实现主从定义

replicaof  172.16.19.3  6379

        接下来,介绍主从库间数据第一次同步的三个阶段。

        第一阶段是主从库间建立连接、协商同步的过程,主要是为全量复制做准备。在这一步,从库和主库建立起连接,并告诉主库即将进行同步,主库确认回复后,主从库间就可以开始同步了。 

        具体来说,从库给主库发送 psync 命令,表示要进行数据同步,主库根据这个命令的参数来启动复制。psync 命令包含了主库的 runID 和复制进度 offset 两个参数。

  • runID,是每个 Redis 实例启动时都会自动生成的一个随机 ID,用来唯一标记这个实例。当从库和主库第一次复制时,因为不知道主库的 runID,所以将 runID 设为“?”。
  • offset,此时设为 -1,表示第一次复制。

        主库收到 psync 命令后,会用 FULLRESYNC 响应命令带上两个参数:主库 runID 和主库目前的复制进度 offset,返回给从库。从库收到响应后,会记录下这两个参数。

        这里有个地方需要注意,FULLRESYNC 响应表示第一次复制采用的全量复制,也就是说,主库会把当前所有的数据都复制给从库// 第一次是数据全量复制

        在第二阶段主库将所有数据同步给从库。从库收到数据后,在本地完成数据加载。这个过程依赖于内存快照生成的 RDB 文件。

        具体来说,主库执行 bgsave 命令,生成 RDB 文件,接着将文件发给从库。从库接收到 RDB 文件后,会先清空当前数据库,然后加载 RDB 文件。这是因为从库在通过 replicaof 命令开始和主库同步前,可能保存了其他数据。为了避免之前数据的影响,从库需要先把当前数据库清空。

        在主库将数据同步给从库的过程中,主库不会被阻塞,仍然可以正常接收请求。否则,Redis 的服务就被中断了。但是,这些请求中的写操作并没有记录到刚刚生成的 RDB 文件中。为了保证主从库的数据一致性,主库会在内存中用专门的 replication buffer,记录 RDB 文件生成后收到的所有写操作

        最后,也就是第三个阶段,主库会把第二阶段执行过程中新收到的写命令,再发送给从库。具体的操作是,当主库完成 RDB 文件发送后,就会把此时 replication buffer 中的修改操作发给从库,从库再重新执行这些操作。这样一来,主从库就实现同步了。// 以上是非常详细的同步过程,重点

2、主从级联模式分担全量复制时的主库压力

        通过分析主从库间第一次数据同步的过程,你可以看到,一次全量复制中,对于主库来说,需要完成两个耗时的操作:生成 RDB 文件和传输 RDB 文件

        如果从库数量很多,而且都要和主库进行全量复制的话,就会导致主库忙于 fork 子进程生成 RDB 文件,进行数据全量同步。fork 这个操作会阻塞主线程处理正常请求,从而导致主库响应应用程序的请求速度变慢。此外,传输 RDB 文件也会占用主库的网络带宽,同样会给主库的资源使用带来压力。那么,有没有好的解决方法可以分担主库压力呢?

        其实是有的,这就是“主 - 从 - 从”模式

        在刚才介绍的主从库模式中,所有的从库都是和主库连接,所有的全量复制也都是和主库进行的。现在,我们可以通过“主 - 从 - 从”模式将主库生成 RDB 和传输 RDB 的压力,以级联的方式分散到从库上。// 逐个进行同步,A->B->C,相对的主从

        简单来说,我们在部署主从集群的时候,可以手动选择一个从库(比如选择内存资源配置较高的从库),用于级联其他的从库。然后,我们可以再选择一些从库(例如三分之一的从库),在这些从库上执行如下命令,让它们和刚才所选的从库,建立起主从关系。

replicaof  所选从库的IP 6379

        这样一来,这些从库就会知道,在进行同步时,不用再和主库进行交互了,只要和级联的从库进行写操作同步就行了,这就可以减轻主库上的压力,如下图所示:

        好了,到这里,我们了解了主从库间通过全量复制实现数据同步的过程,以及通过“主 - 从 - 从”模式分担主库压力的方式。那么,一旦主从库完成了全量复制,它们之间就会一直维护一个网络连接,主库会通过这个连接将后续陆续收到的命令操作再同步给从库,这个过程也称为基于长连接的命令传播,可以避免频繁建立连接的开销// 主从之间的网络连接不中断

        听上去好像很简单,但不可忽视的是,这个过程中存在着风险点,最常见的就是网络断连或阻塞。如果网络断连,主从库之间就无法进行命令传播了,从库的数据自然也就没办法和主库保持一致了,客户端就可能从从库读到旧数据。

        那么,网络断连后有什么解决办法吗?

3、主从库间网络断了怎么办?

        在 Redis 2.8 之前,如果主从库在命令传播时出现了网络闪断,那么,从库就会和主库重新进行一次全量复制,开销非常大。// 全量同步

        从 Redis 2.8 开始,网络断了之后,主从库会采用增量复制的方式继续同步。听名字大概就可以猜到它和全量复制的不同:全量复制是同步所有数据,而增量复制只会把主从库网络断连期间主库收到的命令,同步给从库。// 增量同步

        那么,增量复制时,主从库之间具体是怎么保持同步的呢?这里的奥妙就在于 repl_backlog_buffer 这个缓冲区。我们先来看下它是如何用于增量命令的同步的。

        当主从库断连后,主库会把断连期间收到的写操作命令,写入 replication buffer,同时也会把这些操作命令也写入 repl_backlog_buffer 这个缓冲区。

        repl_backlog_buffer 是一个环形缓冲区,主库会记录自己写到的位置,从库则会记录自己已经读到的位置// 如果当前机制不够就新建一个

        刚开始的时候,主库和从库的写读位置在一起,这算是它们的起始位置。随着主库不断接收新的写操作,它在缓冲区中的写位置会逐步偏离起始位置,我们通常用偏移量来衡量这个偏移距离的大小,对主库来说,对应的偏移量就是 master_repl_offset。主库接收的新写操作越多,这个值就会越大。

        同样,从库在复制完写操作命令后,它在缓冲区中的读位置也开始逐步偏移刚才的起始位置,此时,从库已复制的偏移量 slave_repl_offset 也在不断增加。正常情况下,这两个偏移量基本相等。

        主从库的连接恢复之后,从库首先会给主库发送 psync 命令,并把自己当前的 slave_repl_offset 发给主库,主库会判断自己的 master_repl_offset 和 slave_repl_offset 之间的差距。

        在网络断连阶段,主库可能会收到新的写操作命令,所以,一般来说,master_repl_offset 会大于 slave_repl_offset。此时,主库只用把 master_repl_offset 和 slave_repl_offset 之间的命令操作同步给从库就行。// 断开重连后的同步操作

        就像刚刚示意图的中间部分,主库和从库之间相差了 put d e 和 put d f 两个操作,在增量复制时,主库只需要把它们同步给从库,就行了。

        增量复制的流程如图:

        不过,有一个地方我要强调一下,因为 repl_backlog_buffer 是一个环形缓冲区,所以在缓冲区写满后,主库会继续写入,此时,就会覆盖掉之前写入的操作。如果从库的读取速度比较慢,就有可能导致从库还未读取的操作被主库新写的操作覆盖了,这会导致主从库间的数据不一致。

        因此,我们要想办法避免这一情况,一般而言,我们可以调整 repl_backlog_size 这个参数。这个参数和所需的缓冲空间大小有关。缓冲空间的计算公式是:缓冲空间大小 = 主库写入命令速度 * 操作大小 - 主从库间网络传输命令速度 * 操作大小。在实际应用中,考虑到可能存在一些突发的请求压力,我们通常需要把这个缓冲空间扩大一倍,即 repl_backlog_size = 缓冲空间大小 * 2,这也就是 repl_backlog_size 的最终值。//  人为指定环形缓冲区参数的大小

        举个例子,如果主库每秒写入 2000 个操作,每个操作的大小为 2KB,网络每秒能传输 1000 个操作,那么,有 1000 个操作需要缓冲起来,这就至少需要 2MB 的缓冲空间。否则,新写的命令就会覆盖掉旧操作了。为了应对可能的突发压力,我们最终把 repl_backlog_size 设为 4MB。

        这样一来,增量复制时主从库的数据不一致风险就降低了。不过,如果并发请求量非常大,连两倍的缓冲空间都存不下新操作请求的话,此时,主从库数据仍然可能不一致。

        针对这种情况,一方面,你可以根据 Redis 所在服务器的内存资源再适当增加 repl_backlog_size 值,比如说设置成缓冲空间大小的 4 倍,另一方面,你可以考虑使用切片集群来分担单个主库的请求压力。关于切片集群,将在后边的文章中做具体介绍。

总结

        Redis 的主从库同步的基本原理,总结来说,有三种模式:全量复制、基于长连接的命令传播,以及增量复制

        全量复制虽然耗时,但是对于从库来说,如果是第一次同步,全量复制是无法避免的,所以,我给你一个小建议:一个 Redis 实例的数据库不要太大,一个实例大小在几 GB 级别比较合适,这样可以减少 RDB 文件生成、传输和重新加载的开销。另外,为了避免多个从库同时和主库进行全量复制,给主库过大的同步压力,我们也可以采用“主 - 从 - 从”这一级联模式,来缓解主库的压力。

        长连接复制是主从库正常运行后的常规同步阶段。在这个阶段中,主从库之间通过命令传播实现同步。不过,这期间如果遇到了网络断连,增量复制就派上用场了。需要特别留意一下 repl_backlog_size 这个配置参数如果它配置得过小,在增量复制阶段,可能会导致从库的复制进度赶不上主库,进而导致从库重新进行全量复制。所以,通过调大这个参数,可以减少从库在网络断连时全量复制的风险。

        不过,主从库模式使用读写分离虽然避免了同时写多个实例带来的数据不一致问题,但是还面临主库故障的潜在风险。主库故障了从库该怎么办,数据还能保持一致吗,Redis 还能正常提供服务吗?// 从库挂了可以重连,主库挂了呢?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/376601.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2023JAVA面试题全集超全面超系统超实用!早做准备早上岸

2022年我凭借一份《Java面试核心知识点》成功拿下了阿里、字节、小米等大厂的offer,两年的时间,为了完成我给自己立的flag(拿下一线互联网企业offer大满贯),即使在职也一直在不断的学习与备战面试中!——或…

【Spark分布式内存计算框架——Spark Streaming】6. DStream(下)流式应用状态 Kafka

3.3 流式应用状态 使用SparkStreaming处理实际实时应用业务时,针对不同业务需求,需要使用不同的函数。SparkStreaming流式计算框架,针对具体业务主要分为三类,使用不同函数进行处理: 业务一:无状态Statel…

【数电基础】——数制和码制

目录 1.概述 1.信号(电路)的功能 2.信号的分类: 3.数字信号的输入和输出的逻辑关系表示方法 2.数制 1.十进制(D/d) 2.二进制(B/b) 3.八进制(O/o) 4.十六进制(H/h)…

使用huggingface微调预训练模型

官方教程:https://huggingface.co/docs/transformers/training 准备数据集(基于datasets库) train.json 数据格式: {"source":"你是谁?", "target":"我是恁爹"} {"so…

FSP:Flow of Solution Procedure (CVPR 2017) 原理与代码解析

paper:A Gift From Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learningcode:https://github.com/HobbitLong/RepDistiller/blob/master/distiller_zoo/FSP.py背景深度神经网络DNN逐层生成特征。更高层的特征更接近…

内存数据库的设计与实现(已在大型项目中应用)

一、概况 1、设计总图 组成,由Redis集群缓存,普通缓存,传统数据库,各类数据驱动 2、内存数据库的增删改查,分页查询 组成,由数据查询,分页查询,数据存储,数据修改,数据删除 3、内存数据库的驱动 组成,由驱动适配器,普通缓存驱动,Redis缓存驱动 4、内存数据库与…

C++常见类型及占用内存表

GPS生产厂家在定义数据的时候都会有一定的数据类型,例如double、int、float等,我们知道它们在内存中都对应了一定的字节大小,而我在实际使用时涉及到了端序的问题(大端序高字节在前,小端序低字节在前)&…

redis主从同步:如何实现数据一致

Redis 提供了主从库模式,以保证数据副本的一致,主从库之间采用的是读写分离的方式。读操作:主库、从库都可以接收;写操作:首先到主库执行,然后,主库将写操作同步给从库。和mysql差不多。但是同步…

自动驾驶专题介绍 ———— 毫米波雷达

文章目录介绍工作原理特点性能参数应用厂家介绍 毫米波雷达是工作在毫米波波段探测的雷达,与普通雷达相似,是通过发射无线电信号并接收反射信号来测量物体间的距离。毫米波雷达工作频率为30~300GHz(波长为1 - 10mm),波长介于厘米波和光波之间…

【数据挖掘实战】——家用电器用户行为分析及事件识别(BP神经网络)

项目地址:Datamining_project: 数据挖掘实战项目代码 目录 一、背景和挖掘目标 1、问题背景 2、原始数据 3、挖掘目标 二、分析方法与过程 1、初步分析 2、总体流程 第一步:数据抽取 第二步:探索分析 第三步:数据的预处…

为什么负责任的技术始于数据治理

每个组织都处理数据,但并非每个组织都将其数据用作业务资产。但是,随着数据继续呈指数级增长,将数据视为业务资产正在成为竞争优势。 埃森哲的一项研究发现,只有 33% 的公司“足够信任他们的数据,能够有效地使用它并从…

色环电阻的阻值如何识别

这种是色环电阻,其外表有一圈圈不同颜色的色环,现在在一些电器和电源电路中还有使用。下面的两种色环电阻它颜色还不一样,一个蓝色,一个土黄色,其实这个蓝色的属于金属膜色环电阻,外表涂的是一层金属膜&…

Qt新手入门指南 - 如何创建模型/视图(四)

每个UI开发人员都应该了解ModelView编程,本教程的目标是为大家提供一个简单易懂的介绍。Qt 是目前最先进、最完整的跨平台C开发工具。它不仅完全实现了一次编写,所有平台无差别运行,更提供了几乎所有开发过程中需要用到的工具。如今&#xff…

AJAX介绍及其应用

1.1 AJAX 简介 AJAX全称为 Asynchronous JavaScript and XML ,就是异步的js和xml。通过AJAX可以在浏览器中向服务器发送异步请求,最大的优势,无刷新获取数据。AJAX不是新的编程语言,而是一种现有的标准组合再一起使用的新方式 应…

scanpy 单细胞分析API接口使用案例

参考:https://zhuanlan.zhihu.com/p/537206999 https://scanpy.readthedocs.io/en/stable/api.html scanpy python包主要分四个模块: 1)read 读写模块、 https://scanpy.readthedocs.io/en/stable/api.html#reading 2)pp Prepr…

springBoot自动装配原理探究springBoot配置类Thymeleaf模板引擎

微服务 微服务是一种架构风格,由于单体架构不利于团队协作完成并且代码量较大,后期维护成本较高,逐渐有了微服务架构。微服务是将一个项目拆分成不同的服务,各个服务之间相互独立互不影响,互相通过轻量级机制通信比如…

(转载)STM32与LAN9252构建EtherCAT从站

目录 (一):项目简介 EtherCAT及项目简述 LAN9252工作模式 整体开发流程 移植要处理的问题 代码层面的工作 开发中使用的工具 (二):SSC的使用 SSC简介和下载 SSC构建协议栈文件和XML &#xff08…

爬虫数据解析-正则表达式

数据解析-正则表达式 正则表达式 正则编写规则简介 字符含义.匹配除换行符以外的任意字符|A|B表示:匹配正则表达式条件A或B^匹配字符串的开始(在集合[]里表示"非")的意思$匹配字符串的结束{n}重复n次{,n}重复小于n次{n,}重复n次或更多次{n,…

2023软件测试金三银四常见的软件测试面试题-【抓包和网络协议篇】

八、抓包与网络协议 8.1 抓包工具怎么用 我原来的公司对于抓包这块,在App的测试用得比较多。我们会使用fiddler抓取数据检查结果,定位问题,测试安全,制造弱网环境; 如:抓取数据通过查看请求数据,请求行&…

经验 // 指标异常了怎么办?

本文参考了数据万花筒的文章,结合我自己工作经验。希望给大家一些帮助。 指标异常排查,是数据分析师的工作重点之一,是各行各业数据分析师都绕不开的话题。 本文试图回答: 1、指标波动的影响因素有哪些? 2、如何快速…