RabbitMQ发布确认模式

news2024/11/17 17:25:30

目录

一、发布确认原理

二、发布确认的策略

(一)开启发布确认的方法

(二)单个确认模式

(三)批量确认模式

(四)异步确认模式

(五)如何处理异步未确认消息

(六)总结


一、发布确认原理

        生产者将信道设置成 confirm 模式,一旦信道进入 confirm 模式,所有在该信道上面发布的
消息都将会被指派一个唯一的 ID (从 1 开始),一旦消息被投递到所有匹配的队列之后,broker
就会发送一个确认给生产者(包含消息的唯一 ID),这就使得生产者知道消息已经正确到达目的队
列了,如果消息和队列是可持久化的,那么确认消息会在将消息写入磁盘之后发出,broker 回传
给生产者的确认消息中 delivery-tag 域包含了确认消息的序列号,此外 broker 也可以设置
basic.ack 的 multiple 域,表示到这个序列号之前的所有消息都已经得到了处理。
        confirm 模式最大的好处在于他是异步的,一旦发布一条消息,生产者应用程序就可以在等信 道返回确认的同时继续发送下一条消息,当消息最终得到确认之后,生产者应用便可以通过回调 方法来处理该确认消息,如果 RabbitMQ 因为自身内部错误导致消息丢失,就会发送一条 nack 消 息,生产者应用程序同样可以在回调方法中处理该 nack 消息。

二、发布确认的策略

(一)开启发布确认的方法

        Channel channel = connection.createChannel();
        channel.confirmSelect();

(二)单个确认模式

        这是一种简单的确认方式,它是一种同步确认发布 的方式,也就是发布一个消息之后只有它
被确认发布,后续的消息才能继续发布,waitForConfirmsOrDie(long)这个方法只有在消息被确认
的时候才返回,如果在指定时间范围内这个消息没有被确认那么它将抛出异常。
        这种确认方式有一个最大的缺点就是:发布速度特别的慢, 因为如果没有确认发布的消息就会
阻塞所有后续消息的发布,这种方式最多提供每秒不超过数百条发布消息的吞吐量。当然对于某
些应用程序来说这可能已经足够了。
    public static void publishMessageIndividually() throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        channel.confirmSelect();
        String queue_name = UUID.randomUUID().toString();
        channel.queueDeclare(queue_name, false, false, false, null);
        long begin = System.currentTimeMillis();
        for (Integer i = 0; i < MESSAGE_COUNT; i++) {
            String message = "消息" + i;
            channel.basicPublish("", queue_name,null,  message.getBytes());
            channel.waitForConfirms();
        }
        long end = System.currentTimeMillis();

        System.out.println("发送1000条消息成功,耗时为:" + (end - begin) + "ms");
    }

(三)批量确认模式

        上面那种方式非常慢,与单个等待确认消息相比,先发布一批消息然后一起确认可以极大地
提高吞吐量,当然这种方式的缺点就是:当发生故障导致发布出现问题时,不知道是哪个消息出现
问题了,我们必须将整个批处理保存在内存中,以记录重要的信息而后重新发布消息。当然这种
方案仍然是同步的,也一样阻塞消息的发布
    public static void publishMessageBatch() throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        channel.confirmSelect();
        String queue_name = UUID.randomUUID().toString();
        channel.queueDeclare(queue_name, false, false, false, null);
        long begin = System.currentTimeMillis();
        for (Integer i = 0; i < MESSAGE_COUNT; i++) {
            if(i % 100 == 0) channel.waitForConfirms();
            String message = "消息" + i;
            channel.basicPublish("", queue_name,null,  message.getBytes());

        }
        long end = System.currentTimeMillis();

        System.out.println("发送1000条消息成功,耗时为:" + (end - begin) + "ms");
    }

(四)异步确认模式

        异步确认虽然编程逻辑比上两个要复杂,但是性价比最高,无论是可靠性还是效率都没得说, 他是利用回调函数来达到消息可靠性传递的,这个中间件也是通过函数回调来保证是否投递成功。
下面就让我们来详细讲解异步确认是怎么实现的。

    public static void publishMessageAsync() throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        channel.confirmSelect();
        String queue_name = UUID.randomUUID().toString();
        channel.queueDeclare(queue_name, false, false, false, null);
        ConcurrentSkipListMap<Long, String> outstandingConfirms = new ConcurrentSkipListMap<>();

        // 异步监听broker传递过来的消息确认回调通知
        // 确认回调消息
        ConfirmCallback ackCallback = (deliveryTag, multiple) -> {
            if(multiple) {
                // 找出该序号前面所有的消息进行清空
                ConcurrentNavigableMap<Long, String> confirmed =
                        outstandingConfirms.headMap(deliveryTag, true);
                //清除该部分未确认消息
                confirmed.clear();
            } else  {
                // 不是批量的话就清除单条消息
                outstandingConfirms.remove(deliveryTag);
            }
            System.out.println(deliveryTag + "消息发送成功");
        };

        // 失败回调消息
        ConfirmCallback nackCallback = (deliveryTag, multiple) -> {
            // 获取序列号并输出
            String message = outstandingConfirms.get(deliveryTag);
            System.out.println("发布的消息"+message+"未被确认,序列号"+deliveryTag);
        };
        // 设置确认监听器,两个,一个监听成功的,一个监听失败的
        channel.addConfirmListener(ackCallback, nackCallback);
        long begin = System.currentTimeMillis();
        for (Integer i = 0; i < MESSAGE_COUNT; i++) {
            String message = "消息" + i;
            channel.basicPublish("", queue_name,null,  message.getBytes());
            // 获取序列号和消息内容,并且把消息放入队列
            outstandingConfirms.put(channel.getNextPublishSeqNo(), message);
        }
        long end = System.currentTimeMillis();

        System.out.println("发送1000条消息成功,耗时为:" + (end - begin) + "ms");
    }

(五)如何处理异步未确认消息

        最好的解决的解决方案就是把未确认的消息放到一个基于内存的能被发布线程访问的队列,
比如说用 ConcurrentLinkedQueue 这个队列在 confirm callbacks 与发布线程之间进行消息的传
递。

(六)总结

单独发布消息
同步等待确认,简单,但吞吐量非常有限。
批量发布消息
批量同步等待确认,简单,合理的吞吐量,一旦出现问题但很难推断出是哪条消息出现了问题。
异步处理:
最佳性能和资源使用,在出现错误的情况下可以很好地控制,但是实现起来稍微难些
    public static void main(String[] args) throws Exception {
//        publishMessageIndividually();  // 同步确认发送消息, 耗时为:769ms
//        publishMessageBatch();  // 批量确认发送消息,耗时为:84ms
        publishMessageAsync();  // 异步确认发送消息, 耗时为:43ms
    }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/370745.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

华为CT6100双千M路由记录

该文章仅仅记录使用CT6100的流程&#xff0c;不提供任何参考和建议。 一、简介 设备&#xff1a;华为CT6100瘦客服端&#xff0c;J1800cpu&#xff0c;不包含外壳&#xff0c;有双千M网口&#xff0c;2G内存8G硬盘。系统&#xff1a;esir的高大全openwrt版本用途&#xff1a;对…

QT 完美实现圆形按钮

QT 版本&#xff1a;5.6.0 官方的按钮有些普通&#xff0c;如果我们想要换成自己喜欢的按钮而却无从下手&#xff0c;那么请继续往下阅读&#xff08;皮一下&#xff09;。 首先&#xff0c;可以在网络上搜索一下自己喜欢的按钮图形&#xff08;或者可以自行绘制&#xff09;…

十大算法基础——上(共有20道例题,大多数为简单题)

一、枚举&#xff08;Enumerate&#xff09;算法 定义&#xff1a;就是一个个举例出来&#xff0c;然后看看符不符合条件。 举例&#xff1a;一个数组中的数互不相同&#xff0c;求其中和为0的数对的个数。 for (int i 0; i < n; i)for (int j 0; j < i; j)if (a[i] …

偏向锁、轻量级锁、自旋锁、重量级锁,它们都是什么?有什么关联

互斥锁的本质是共享资源。 当有多个线程同时对一个资源进行操作时&#xff0c;为了线程安全&#xff0c;要对资源加锁。 更多基础内容参看上文《深入了解Java线程锁(一)》 接下来&#xff0c;我们来看看两个线程抢占重量级锁的情形&#xff1a; 上图讲述了两个线程ThreadA和…

SMART PLC斜坡函数功能块(梯形图代码)

斜坡函数Ramp的具体应用可以参看下面的文章链接: PID优化系列之给定值斜坡函数(PLC代码+Simulink仿真测试)_RXXW_Dor的博客-CSDN博客很多变频器里的工艺PID,都有"PID给定值变化时间"这个参数,这里的给定值变化时间我们可以利用斜坡函数实现,当然也可以利用PT1…

vb.net 视频音频转换

视频&音频转换工具 V23.0主流视频音频转换工具&#xff0c;Kbps数值越大&#xff0c;音频品质越高&#xff08;前提原视频或音频文件品质高&#xff09;。.NETFramework V4.0点击按钮 选中文件 保存文件 即可转换&#xff0c;转换速度较快&#xff0c;转换后的音频文件未发…

Detr源码解读(mmdetection)

Detr源码解读(mmdetection) 1、原理简要介绍 整体流程&#xff1a; 在给定一张输入图像后&#xff0c;1&#xff09;特征向量提取&#xff1a; 首先经过ResNet提取图像的最后一层特征图F。注意此处仅仅用了一层特征图&#xff0c;是因为后续计算复杂度原因&#xff0c;另外&am…

使用kubeadm 部署kubernetes 1.26.1集群 Calico ToR配置

目录 机器信息 升级内核 系统配置 部署容器运行时Containerd 安装crictl客户端命令 配置服务器支持开启ipvs的前提条件 安装 kubeadm、kubelet 和 kubectl 初始化集群 &#xff08;master&#xff09; 安装CNI Calico 集群加入node节点 机器信息 主机名集群角色IP内…

DS期末复习卷(十)

一、选择题(24分) 1&#xff0e;下列程序段的时间复杂度为&#xff08; A &#xff09;。 i0&#xff0c;s0&#xff1b; while (s<n) {ssi&#xff1b;i&#xff1b;} (A) O(n^1/2) (B) O(n ^1/3) © O(n) (D) O(n ^2) 12…xn xn^1/2 2&#xff0e;设某链表中最常用的…

SnowFlake 雪花算法和原理(分布式 id 生成算法)

一、概述 SnowFlake 算法&#xff1a;是 Twitter 开源的分布式 id 生成算法。核心思想&#xff1a;使用一个 64 bit 的 long 型的数字作为全局唯一 id。算法原理最高位是符号位&#xff0c;始终为0&#xff0c;不可用。41位的时间序列&#xff0c;精确到毫秒级&#xff0c;41位…

Android 原生 TabLayout 使用全解析

前言为什么会有这篇文章呢&#xff0c;是因为之前关于TabLayout的使用陆陆续续也写了好几篇了&#xff0c;感觉比较分散&#xff0c;且不成体系&#xff0c;写这篇文章的目的就是希望能把各种效果的实现一次性讲齐&#xff0c;所以也有了标题的「看这篇就够了」。TabLayout作为…

【自然语言处理】Topic Coherence You Need to Know(主题连贯度详解)

Topic Coherence You Need to Know皮皮&#xff0c;京哥皮皮&#xff0c;京哥皮皮&#xff0c;京哥CommunicationUniversityofChinaCommunication\ University\ of\ ChinaCommunication University of China 在大多数关于主题建模的文章中&#xff0c;常用主题连贯度&#xff…

JSP实现数据传递与保存(一)

学习目标&#xff1a; 理解JSP内置对象的概念 掌握request和response的使用 掌握转发和重定向的区别 掌握out对象的使用 学习内容&#xff1a; 1.HTML页面转成JSP页面 HTML页面转成JSP页面一般有两种方式 方式1&#xff1a;直接修改HTML页面 1&#xff09;直接在HTM…

QT+OpenGL模板测试和混合

QTOpenGL模板测试和混合 本篇完整工程见gitee:QtOpenGL 对应点的tag&#xff0c;由turbolove提供技术支持&#xff0c;您可以关注博主或者私信博主 模板测试 当片段着色器处理完一个片段之后&#xff0c;模板测试会开始执行。和深度测试一样&#xff0c;它可能会丢弃片段&am…

Win11的两个实用技巧系列之Win11怎么找回Win7照片查看器

Win11怎么找回Win7照片查看器? Win11旧版照片查看器的切换方法Win11怎么找回Win7照片查看器&#xff1f;用习惯了win7的照片查看器&#xff0c;想要在win11中使用&#xff0c;该怎么启用旧版照片查看器呢&#xff1f;下面我们就来看看Win11旧版照片查看器的切换方法Win11系统启…

c++之二叉树【进阶版】

前言 在c语言阶段的数据结构系列中已经学习过二叉树&#xff0c;但是这篇文章是二叉树的进阶版&#xff0c;因为首先就会讲到一种树形结构“二叉搜索树”&#xff0c;学习二叉搜索树的目标是为了更好的理解map和set的特性。二叉搜索树的特性就是左子树键值小于根&#xff0c;右…

【JVM】运行时数据区与对象的创建流程

4、运行时数据区 4.1、运行时数据区介绍 运行时数据区也就是JVM在运⾏时产生的数据存放的区域&#xff0c;这块区域就是JVM的内存区域&#xff0c;也称为JVM的内存模型——JMM 堆空间&#xff08;线程共享&#xff09;&#xff1a;存放new出来的对象 元空间&#xff08;线程共…

3,预初始化(一)(大象无形9.2)

正如书中所说&#xff0c;预初始化流程由FEngineLoop::PreInit()所实现 主要处理流程 1&#xff0c;设置路径&#xff1a;当前程序路径&#xff0c;当前工作目录路径&#xff0c;游戏的工程路径 2,设置标准输出&#xff1a;设置GLog系统输出的设备&#xff0c;是输出到命令行…

web自动化测试-执行 JavaScript 脚本

JavaScript 是一种脚本语言&#xff0c;有的场景需要使用 js 脚本注入辅助我们完成 Selenium 无法做到的事情。 当 webdriver 遇到无法完成的操作时&#xff0c;可以使用 JavaScript 来完成&#xff0c;webdriver 提供了 execute_script() 方法来调用 js 代码。 执行 js 有两种…

Leetcode.2385 感染二叉树需要的总时间

题目链接 Leetcode.2385 感染二叉树需要的总时间 Rating &#xff1a; 1711 题目描述 给你一棵二叉树的根节点 root&#xff0c;二叉树中节点的值 互不相同 。另给你一个整数 start。在第 0分钟&#xff0c;感染 将会从值为 start的节点开始爆发。 每分钟&#xff0c;如果节点…