函数的栈帧的创建和销毁

news2024/12/24 20:28:06

文章目录

  • 本章主题:
  • 一.什么是函数栈帧
    • 1.什么是栈
    • 2.什么是函数栈帧
  • 二.理解函数栈帧能解决什么问题呢?
  • 三.函数栈帧的创建和销毁解析
    • 1.预备知识
      • (1) 认识相关寄存器和汇编指令
      • (2)栈帧空间的维护
    • 2.解析函数栈帧的创建和销毁
      • (1)准备环境
      • (2)函数栈帧的创建
      • (3)函数栈帧的销毁
  • 总结

本章主题:

  • 什么是函数栈帧?
  • 理解函数栈帧能解决什么问题?
  • 函数栈帧的创建和销毁解析

正文开始

一.什么是函数栈帧

我们在写C语言代码的时候,经常会把一个独立的功能抽象为函数,所以C程序是以函数为基本单位的。那函数是如何调用的?函数的返回值又是如何带回的?函数参数是如何传递的?这些问题都和函数栈帧有关系。

1.什么是栈

  1. 栈(stack)是现代计算机程序里最为重要的概念之一,几乎每一个程序都使用了栈,没有栈就没有函数,没有局部变量,也就没有我们如今看到的所有的计算机语言。
  2. 在经典的计算机科学中,栈被定义为一种特殊的容器,用户可以将数据压入栈中(入栈,push),也可以将已经压入栈中的数据弹出(出栈,pop),但是栈这个容器必须遵守一条规则:先入栈的数据后出栈(First In Last Out, FIFO)。就像叠成一叠的书,先叠上去的书在最下面,因此要最后才能取出。
  3. 在计算机系统中,栈则是一个具有以上属性的动态内存区域。程序可以将数据压入栈中,也可以将数据从栈顶弹出。压栈操作使得栈增大,而弹出操作使得栈减小。
  4. 在经典的操作系统中,栈总是向下增长(由高地址向低地址)的。在我们常见的i386或者x86-64下,栈顶由成为 esp 的寄存器进行定位的。

2.什么是函数栈帧

函数栈帧(stack frame)就是函数调用过程中在程序的调用栈(call stack)所开辟的空间,这些空间是用来存放:

  1. 函数参数和函数返回值
  2. 临时变量(包括函数的非静态的局部变量以及编译器自动生产的其他临时变量)
  3. 保存上下文信息(包括在函数调用前后需要保持不变的寄存器)。

二.理解函数栈帧能解决什么问题呢?

理解函数栈帧有什么用呢?
只要理解了函数栈帧的创建和销毁,以下问题就能够很好的额理解了:

  • 局部变量是如何创建的?
  • 为什么局部变量不初始化内容是随机的?
  • 函数调用时参数时如何传递的?传参的顺序是怎样的?
  • 函数的形参和实参分别是怎样实例化的?
  • 函数的返回值是如何带会的?

让我们一起走进函数栈帧的创建和销毁的过程中。

三.函数栈帧的创建和销毁解析

1.预备知识

(1) 认识相关寄存器和汇编指令

①相关寄存器

eax:通用寄存器,保留临时数据,常用于返回值
ebx:通用寄存器,保留临时数据
ebp:栈底寄存器
esp:栈顶寄存器
eip:指令寄存器,保存当前指令的下一条指令的地址

②相关汇编命令

mov:数据转移指令
push:数据入栈,同时esp栈顶寄存器也要发生改变
pop:数据弹出至指定位置,同时esp栈顶寄存器也要发生改变
sub:减法命令
add:加法命令
call:函数调用,1. 压入返回地址 2. 转入目标函数
jump:通过修改eip,转入目标函数,进行调用
ret:恢复返回地址,压入eip,类似pop eip命令

(2)栈帧空间的维护

  1. 每一次函数调用,都要为本次函数调用开辟空间,就是函数栈帧的空间。
  2. 这块空间的维护是使用了2个寄存器: esp和ebp ,ebp记录的是栈底的地址,esp记录的是栈顶的地址。

如图所示:
在这里插入图片描述

2.解析函数栈帧的创建和销毁

演示代码(以vs2019为例):

#include <stdio.h>
int Add(int x, int y)
{
int z = 0;
z = x + y;
return z;
}
int main()
{
int a = 3;
int b = 5;
int ret = 0;
ret = Add(a, b);
printf("%d\n", ret);
return 0;
}

(1)准备环境

这段代码,我们在VS2019编译器上调试,调试进入Add函数后,我们就可以观察到函数的调用堆栈(右击勾选【显示外部代码】),如下图:
在这里插入图片描述
函数调用堆栈是反馈函数调用逻辑的,那我们可以清晰的观察到, main 函数调用之前,是由 invoke_main 函数来调用main函数。在 invoke_main 函数之前的函数调用我们就暂时不考虑了。
那我们可以确定, invoke_main 函数应该会有自己的栈帧, main 函数和 Add 函数也会维护自己的栈
帧,每个函数栈帧都有自己的 ebp 和 esp 来维护栈帧空间
那接下来我们从main函数的栈帧创建开始讲解:

(2)函数栈帧的创建

调试到main函数开始执行的第一行,右击鼠标转到反汇编。

int main()
{
//函数栈帧的创建
00BE1820 push ebp
00BE1821 mov ebp,esp
00BE1823 sub esp,0E4h
00BE1829 push ebx
00BE182A push esi
00BE182B push edi
00BE182C lea edi,[ebp-24h]
00BE182F mov ecx,9
00BE1834 mov eax,0CCCCCCCCh
00BE1839 rep stos dword ptr es:[edi]
//main函数中的核心代码
int a = 3;
00BE183B mov dword ptr [ebp-8],3
int b = 5;
00BE1842 mov dword ptr [ebp-14h],5
int ret = 0;
00BE1849 mov dword ptr [ebp-20h],0
ret = Add(a, b);
00BE1850 mov eax,dword ptr [ebp-14h]
00BE1853 push eax
00BE1854 mov ecx,dword ptr [ebp-8]
00BE1857 push ecx
00BE1858 call 00BE10B4
00BE185D add esp,8
00BE1860 mov dword ptr [ebp-20h],eax
printf("%d\n", ret);
00BE1863 mov eax,dword ptr [ebp-20h]
00BE1866 push eax
00BE1867 push 0BE7B30h
00BE186C call 00BE10D2
00BE1871 add esp,8
return 0;
00BE1874 xor eax,eax
}

可以看到 main 函数转化来的汇编代码如上所示。接下来就一行行拆解分析汇编代码:

00BE1820 push ebp //把ebp寄存器中的值进行压栈,此时的ebp中存放的是invoke_main函数栈帧的ebp,esp-4
00BE1821 mov ebp,esp //move指令会把esp的值存放到ebp中,相当于产生了main函数的ebp,这个值就是invoke_main函数栈帧的esp
00BE1823 sub esp,0E4h //sub会让esp中的地址减去一个16进制数字0xe4,产生新的esp,此时的esp是main函数栈帧的esp,此时结合上一条指令的ebp和当前的esp,ebp和esp之间维护了一个块栈空间,这块栈空间就是为main函数开辟的,就是main函数的栈帧空间,这一段空间中将存储main函数中的局部变量,临时数据已经调试信息等。
00BE1829 push ebx //将寄存器ebx的值压栈,esp-4
00BE182A push esi //将寄存器esi的值压栈,esp-4
00BE182B push edi //将寄存器edi的值压栈,esp-4
//上面3条指令保存了3个寄存器的值在栈区,这3个寄存器的在函数随后执行中可能会被修改,所以先保存寄存器原来的值,以便在退出函数时恢复。

//下面的代码是在初始化main函数的栈帧空间。
//1. 先把ebp-24h的地址,放在edi中
//2. 把9放在ecx中
//3. 把0xCCCCCCCC放在eax中
//4. 将从edp-0x2h到ebp这一段的内存的每个字节都初始化为0xCC
00BE182C lea edi,[ebp-24h]
00BE182F mov ecx,9
00BE1834 mov eax,0CCCCCCCCh
00BE1839 rep stos dword ptr es:[edi]

上面的这段代码最后4句,等价于下面的伪代码:

edi = ebp-0x24;
ecx = 9;
eax = 0xCCCCCCCC;
for(; ecx = 0; --ecx,edi+=4)
{
*(int*)edi = eax;
}

如下图所示:

在这里插入图片描述
接下来我们再分析main函数中的核心代码:

int a = 3;
00BE183B mov dword ptr [ebp-8],3 //将3存储到ebp-8的地址处,ebp-8的位置其实就是a变量
int b = 5;
00BE1842 mov dword ptr [ebp-14h],5 //将5存储到ebp-14h的地址处,ebp-14h的位置其实是b变量
int ret = 0;
00BE1849 mov dword ptr [ebp-20h],0 //将0存储到ebp-20h的地址处,ebp-20h的位置其实是ret变量
//以上汇编代码表示的变量a,b,ret的创建和初始化,这就是局部的变量的创建和初始化
//局部变量的创建是在局部变量所在函数的栈帧空间中创建的

//调用Add函数
ret = Add(a, b);
//调用Add函数时的传参
//其实传参就是把参数push到栈帧空间中
00BE1850 mov eax,dword ptr [ebp-14h] //传递b,将ebp-14h处放的5放在eax寄存器00BE1853 push eax //将eax的值压栈,esp-4
00BE1854 mov ecx,dword ptr [ebp-8] //传递a,将ebp-8处放的3放在ecx寄存器中
00BE1857 push ecx //将ecx的值压栈,esp-4
//跳转调用函数
00BE1858 call 00BE10B4
00BE185D add esp,8
00BE1860 mov dword ptr [ebp-20h],eax

在这里插入图片描述
Add函数的传参

//调用Add函数
ret = Add(a, b);
//调用Add函数时的传参
//其实传参就是把参数push到栈帧空间中,这里就是函数传参
00BE1850 mov eax,dword ptr [ebp-14h] //传递b,将ebp-14h处放的5放在eax寄存器00BE1853 push eax //将eax的值压栈,esp-4
00BE1854 mov ecx,dword ptr [ebp-8] //传递a,将ebp-8处放的3放在ecx寄存器中
00BE1857 push ecx //将ecx的值压栈,esp-4
//跳转调用函数
00BE1858 call 00BE10B4
00BE185D add esp,8
00BE1860 mov dword ptr [ebp-20h],eax

在这里插入图片描述
函数调用过程:

//跳转调用函数
00BE1858 call 00BE10B4
00BE185D add esp,8
00BE1860 mov dword ptr [ebp-20h],eax

call 指令是要执行函数调用逻辑的,在执行call指令之前先会把call指令的下一条指令的地址进行压栈
操作,这个操作是为了解决当函数调用结束后要回到call指令的下一条指令的地方,继续往后执行。
在这里插入图片描述
当我们跳转到Add函数,就要开始观察Add函数的反汇编代码了:

int Add(int x, int y)
{
00BE1760 push ebp //将main函数栈帧的ebp保存,esp-4
00BE1761 mov ebp,esp //将main函数的esp赋值给新的ebp,ebp现在是Add函数的ebp
00BE1763 sub esp,0CCh //给esp-0xCC,求出Add函数的esp
00BE1769 push ebx //将ebx的值压栈,esp-4
00BE176A push esi //将esi的值压栈,esp-4
00BE176B push edi //将edi的值压栈,esp-4
int z = 0;
00BE176C mov dword ptr [ebp-8],0 //将0放在ebp-8的地址处,其实就是创建z
z = x + y;
//接下来计算的是x+y,结果保存到z中
00BE1773 mov eax,dword ptr [ebp+8] //将ebp+8地址处的数字存储到eax中
00BE1776 add eax,dword ptr [ebp+0Ch] //将ebp+12地址处的数字加到eax寄存中
00BE1779 mov dword ptr [ebp-8],eax //将eax的结果保存到ebp-8的地址处,其实就是放到z中
return z;
00BE177C mov eax,dword ptr [ebp-8] //将ebp-8地址处的值放在eax中,其实就是把z的值存储到eax寄存器中,这里是想通过eax寄存器带回计算的结果,做函数的返回值。
}
00BE177F pop edi
00BE1780 pop esi
00BE1781 pop ebx
00BE1782 mov esp,ebp
00BE1784 pop ebp
00BE1785 ret

代码执行到Add函数的时候,就要开始创建Add函数的栈帧空间了。
在Add函数中创建栈帧的方法和在main函数中是相似的,在栈帧空间的大小上略有差异而已。

  1. 将main函数的ebp 压栈
  2. 计算新的 ebp 和 esp
  3. 将 ebx , esi , edi 寄存器的值保存
  4. 计算求和,在计算求和的时候,我们是通过 ebp 中的地址进行偏移访问到了函数调用前压栈进去的参数,这就是形参访问。
  5. 将求出的和放在 eax 寄存器中准备带回

在这里插入图片描述
图中的 a’ 和 b’ 其实就是 Add 函数的形参 x , y。这很好的说明了函数的传参过程,以及函数
在进行值传递调用的时候,形参其实是实参的一份拷贝,对形参的修改不会影响实参。

(3)函数栈帧的销毁

当函数调用要结束返回的时候,前面创建的函数栈帧也开始销毁。那具体是怎么销毁的呢?我们看一下反汇编代码:

00BE177F pop edi //在栈顶弹出一个值,存放到edi中,esp+4
00BE1780 pop esi //在栈顶弹出一个值,存放到esi中,esp+4
00BE1781 pop ebx //在栈顶弹出一个值,存放到ebx中,esp+4
00BE1782 mov esp,ebp //再将Add函数的ebp的值赋值给esp,相当于回收了Add函数的栈帧空间
00BE1784 pop ebp //弹出栈顶的值存放到ebp,栈顶此时的值恰好就是main函数的ebp,esp+4,此时恢复了main函数的栈帧维护,esp指向main函数栈帧的栈顶,ebp指向了main函数栈帧的栈底。
00BE1785 ret //ret指令的执行,首先是从栈顶弹出一个值,此时栈顶的值就是call指令下一条指令的地址,此时esp+4,然后直接跳转到call指令下一条指令的地址处,继续往下执行。

回到了call指令的下一条指令的地方:

在这里插入图片描述
但调用完Add函数,回到main函数的时候,继续往下执行,可以看到:

00BE185D add esp,8 //esp直接+8,相当于跳过了main函数中压栈的
a'和b'
00BE1860 mov dword ptr [ebp-20h],eax //将eax中值,存档到ebp-0x20的地址处,其实就是存储到main函数中ret变量中,而此时eax中就是Add函数中计算的x和y的和,可以看出来,本次函数的返回值是由eax寄存器带回来的。程序是在函数调用返回之后,在eax中去读取返回值的

以上就是函数栈帧创建和销毁的整个过程了!!

总结

那么来解释一下第二部分提到的几个问题:

  • 局部变量是如何创建的?
    :局部变量的创建是在局部变量所在函数的栈帧空间中创建的
  • 为什么局部变量不初始化内容是随机的?
    :因为栈帧空间的每一个字节会被自动初始化为一些随机值(类似0xCC),局部变量创建后若未初始化,会自动被赋值为这些随机值
  • 函数调用时参数时如何传递的?传参的顺序是怎样的?
    :函数参数的实参从右向左压栈,在栈中同过寄存器指针的偏移量找回函数形参。
  • 函数的形参和实参关系?
    :形参是实参的临时拷贝
  • 函数的返回值是如何带会的?
    :返回值存在eax返回,eax为寄存器集成在cpu上,不会随着函数的销毁而销毁。

本篇到此结束,码文不易,还请多多支持哦!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/360714.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uniapp 引入彩色symbol和 指令权限

uniapp 引入iconfont图标库彩色symbol 1&#xff0c;先去阿里巴巴矢量图标库登录 然后点击下载至本地 2.下载本地&#xff0c;然后解压文件夹 3.打开终端cmd命令窗口 npm安装全局包npm i -g iconfont-tools 4.终端切换到上面解压的文件夹里面&#xff0c;运行iconfont-too…

原理的学习

序参考的是这个书&#xff1a;Python神经网络编程 (豆瓣) (douban.com)小白&#xff0c;0基础&#xff0c;也看不懂其它更复杂的书……01.正向计算从左到右&#xff0c;根据输入值&#xff0c;得到输出值总览这就是神经元的数学形式&#xff1a;阈值函数sigmoid函数&#xff1a…

TIA博途_通过不定长数组实现冒泡排序的具体方法示例(封装FC全局库)

通过不定长数组实现冒泡排序的具体方法示例(封装FC全局库) 使用这种不定长数组时要注意,低版本的博途可能不支持这种方法(我自己尝试的V15版本时失败了,无法实现),本例中使用的是TIA博途V17版本。 具体步骤可参考如下: 如下图所示,打开博途后新建一个项目,添加一个12…

Java监听器的理解与实现

文章目录初识监听器Listener接口分类ServletContext监听器HttpSession监听器ServletRequest监听器Java代码实现ServletContextListenerServletContextAttributeListenerHttpSessionListenerHttpSessionAttributeListenerHttpSessionActivationListenerHttpSessionBindingListen…

在 4G 内存的机器上,申请 8G 内存会怎么样?

在 4GB 物理内存的机器上&#xff0c;申请 8G 内存会怎么样&#xff1f; 这个问题在没有前置条件下&#xff0c;就说出答案就是耍流氓。这个问题要考虑三个前置条件&#xff1a; 操作系统是 32 位的&#xff0c;还是 64 位的&#xff1f;申请完 8G 内存后会不会被使用&#x…

【机器学习】集成学习

1.什么是集成学习 集成学习的基本思想是结合多个学习器组合成一个性能更好的学习器。这类方法会训练多个弱学习器&#xff08;基学习器&#xff09;并将它们输出的结果以某种策略结合起来组成一个强学习器。 2.集成学习的几种方法 根据个体学习器的生成方式&#xff0c;集成学…

手把手教你用React Hook和TypeScript从零实现虚拟滚动列表组件

前言 k8s 全称 kubernetes&#xff0c;这个名字大家应该都不陌生&#xff0c;k8s是为容器服务而生的一个可移植容器的编排管理工具&#xff0c;集应用的部署和运维&#xff0c;负载均衡&#xff0c;服务发现和扩容&#xff0c;版本回滚于一身&#xff0c;越来越多的公司正在拥…

linux集群技术(二)--keepalived(高可用集群)(二)

案例1--keepalived案例2--keepalived Lvs集群1.案例1--keepalived 1.1 环境 初识keepalived&#xff0c;实现web服务器的高可用集群。 Server1: 192.168.26.144 Server2: 192.168.26.169 VIP: 192.168.26.190 1.2 server1 创建etc下的…

02-04 周六 图解机器学习 SVM 支持向量机分类学习

02-04 周六 图解机器学习 SVM 支持向量机分类学习时间版本修改人描述2023年2月4日11:15:16V0.1宋全恒新建文档 环境搭建 首先搭建jupyter环境&#xff0c;方便可视化 (base) rootnode33-a100:~# docker run --name sqh-learn -d -p 10088:8888 -it 10.101.12.128/framework/ju…

Qt-QProcess-启动子进程-控制台进程隐藏-获取子进程标准输出和返回码

文章目录1.隐藏控制台程序1.1.控制台程序生成即隐藏1.2.调用程序隐藏控制台2.QProcess2.1.基础用法-start和startDetached2.2.获取子进程的标准输出3.代码范例3.1.等待进程执行完毕&#xff0c;获取所有的输出3.2.子进程返回信号3.3.进程是否启动3.4.执行命令行3.5.与子进程交互…

GIT客户端安装

步骤1&#xff1a;运行“Git-2.13.1-64-bit.exe”&#xff0c;并点击“运行”按钮&#xff08;默认&#xff09;步骤2&#xff1a;许可信息页面&#xff0c;点击“Next”&#xff08;默认&#xff09;步骤3&#xff1a;选择安装路径&#xff08;默认&#xff09;步骤4&#xff…

记一次 .NET 某医保平台 CPU 爆高分析

一&#xff1a;背景 1. 讲故事 一直在追这个系列的朋友应该能感受到&#xff0c;我给这个行业中无数的陌生人分析过各种dump&#xff0c;终于在上周有位老同学找到我&#xff0c;还是个大妹子&#xff0c;必须有求必应 &#x1f601;&#x1f601;&#x1f601;。 妹子公司的…

IDEA高效插件和设置

安装好Intellij idea之后&#xff0c;进行如下的初始化操作&#xff0c;工作效率提升十倍。 一. 安装插件 1. Codota 代码智能提示插件 只要打出首字母就能联想出一整条语句&#xff0c;这也太智能了&#xff0c;还显示了每条语句使用频率。 原因是它学习了我的项目代码&…

力扣-从不订购的客户

大家好&#xff0c;我是空空star&#xff0c;本篇带大家了解一道简单的力扣sql练习题。 文章目录前言一、题目&#xff1a;183. 从不订购的客户二、解题1.正确示范①提交SQL运行结果2.正确示范②提交SQL运行结果3.正确示范③提交SQL运行结果4.正确示范④提交SQL运行结果总结前言…

2月编程语言排行榜谁还没有看?

近日&#xff0c;TIOBE公布了2023年2月编程语言排行榜&#xff0c;本月各个语言表现如何&#xff1f;谁又摘得桂冠&#xff1f;一起来看看吧&#xff01; TIOBE 2月Top15编程语言&#xff1a; 详细榜单查看TIOBE官网 https://www.tiobe.com/tiobe-index/ 关注IT行业的小伙伴们…

Qt音视频开发15-动态切换解码内核的设计

一、前言 动态切换解码内核这个需求也是源自客户的真实需求&#xff0c;既然是动态切换&#xff0c;那肯定是运行期间切换&#xff0c;而不是通过改变标志位重新编译程序来切换&#xff0c;最开始做的就是这种方式&#xff0c;这样就是实现起来简单&#xff0c;但是用起来不够…

OpenGL ES基础简介

简介 视频的渲染源是 YUV 或者 RGBA 格式的数据&#xff0c;这种数据是描述画面最基础的格式&#xff0c;其中 YUV 常用在视频的原始格式中&#xff0c;RGBA 常用在一些图像的原始格式上。 目前各个平台最终渲染到屏幕上的都是 RGBA 格式的&#xff0c;因为硬件对屏幕上的设计…

【可视化实战】Python 绘制出来的数据大屏真的太惊艳了

今天我们在进行一个Python数据可视化的实战练习&#xff0c;用到的模块叫做Panel&#xff0c;我们通过调用此模块来绘制动态可交互的图表以及数据大屏的制作。 而本地需要用到的数据集&#xff0c;可在kaggle上面获取 https://www.kaggle.com/datasets/rtatman/188-million-us…

SpringBoot之DEBUG远程调试黑科技?

所谓的远程调试就是服务端程序运行在一台远程服务器上&#xff0c;我们可以在本地服务端的代码&#xff08;前提是本地 的代码必须和远程服务器运行的代码一致&#xff09;中设置断点&#xff0c;每当有请求到远程服务器时时能够在本地知道 远程服务端的此时的内部状态。 简单的…

计算机408考研先导课---C语言难点

以下为小编在重温C语言时&#xff0c;容易犯错的一些点&#xff0c;希望列出来对大家有一定帮助&#xff01; 一、整型变量数的范围 类型说明符长度&#xff08;字节&#xff09;数的范围int4/2&#xff08;有些为4字节&#xff0c;有些为2字节&#xff09;-32768~32767short2…