【强化学习论文清单】AAAI-2022 | 人工智能CCF-A类会议(附链接)

news2025/1/11 20:52:03

在这里插入图片描述

人工智能促进会(AAAI)成立于1979年,前身为美国人工智能协会(American Association for Artificial Intelligence),是一个非营利性的科学协会,致力于促进对思想和智能行为及其在机器中的体现的潜在机制的科学理解。AAAI旨在促进人工智能的研究和负责任的使用。AAAI还旨在增加公众对人工智能的了解,改善人工智能从业者的教学和培训,并为研究计划者和资助方提供关于当前人工智能发展的重要性和潜力以及未来方向的指导。

  • [1]. Backprop-Free Reinforcement Learning with Active Neural Generative Coding.
  • [2]. Multi-Sacle Dynamic Coding Improved Spiking Actor Network for Reinforcement Learning.
  • [3]. CADRE: A Cascade Deep Reinforcement Learning Framework for Vision-Based Autonomous Urban Driving.
  • [4]. Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Primal-Dual Approach.
  • [5]. OAM: An Option-Action Reinforcement Learning Framework for Universal Multi-Intersection Control.
  • [6]. EMVLight: A Decentralized Reinforcement Learning Framework for Efficient Passage of Emergency Vehicles.
  • [7]. DeepThermal: Combustion Optimization for Thermal Power Generating Units Using Offline Reinforcement Learning.
  • [8]. AlphaHoldem: High-Performance Artificial Intelligence for Heads-Up No-Limit Poker via End-to-End Reinforcement Learning.
  • [9]. Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning.
  • [10]. Robust Adversarial Reinforcement Learning with Dissipation Inequation Constraint.
  • [11]. Enforcement Heuristics for Argumentation with Deep Reinforcement Learning.
  • [12]. Programmatic Modeling and Generation of Real-Time Strategic Soccer Environments for Reinforcement Learning.
  • [13]. Learning by Competition of Self-Interested Reinforcement Learning Agents.
  • [14]. Reinforcement Learning with Stochastic Reward Machines.
  • [15]. Reinforcement Learning Based Dynamic Model Combination for Time Series Forecasting.
  • [16]. Theoretical Guarantees of Fictitious Discount Algorithms for Episodic Reinforcement Learning and Global Convergence of Policy Gradient Methods.
  • [17]. Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks.
  • [18]. Wasserstein Unsupervised Reinforcement Learning.
  • [19]. Reinforcement Learning of Causal Variables Using Mediation Analysis.
  • [20]. Globally Optimal Hierarchical Reinforcement Learning for Linearly-Solvable Markov Decision Processes.
  • [21]. Creativity of AI: Automatic Symbolic Option Discovery for Facilitating Deep Reinforcement Learning.
  • [22]. Same State, Different Task: Continual Reinforcement Learning without Interference.
  • [23]. Introducing Symmetries to Black Box Meta Reinforcement Learning.
  • [24]. Deep Reinforcement Learning Policies Learn Shared Adversarial Features across MDPs.
  • [25]. Conjugated Discrete Distributions for Distributional Reinforcement Learning.
  • [26]. Learn Goal-Conditioned Policy with Intrinsic Motivation for Deep Reinforcement Learning.
  • [27]. Fast and Data Efficient Reinforcement Learning from Pixels via Non-parametric Value Approximation.
  • [28]. Recursive Reasoning Graph for Multi-Agent Reinforcement Learning.
  • [29]. Exploring Safer Behaviors for Deep Reinforcement Learning.
  • [30]. Constraint Sampling Reinforcement Learning: Incorporating Expertise for Faster Learning.
  • [31]. Unsupervised Reinforcement Learning in Multiple Environments.
  • [32]. Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation.
  • [33]. Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning.
  • [34]. Offline Reinforcement Learning as Anti-exploration.
  • [35]. Regularization Guarantees Generalization in Bayesian Reinforcement Learning through Algorithmic Stability.
  • [36]. Sample-Efficient Reinforcement Learning via Conservative Model-Based Actor-Critic.
  • [37]. Controlling Underestimation Bias in Reinforcement Learning via Quasi-median Operation.
  • [38]. Structure Learning-Based Task Decomposition for Reinforcement Learning in Non-stationary Environments.
  • [39]. Generalizing Reinforcement Learning through Fusing Self-Supervised Learning into Intrinsic Motivation.
  • [40]. Reinforcement Learning Augmented Asymptotically Optimal Index Policy for Finite-Horizon Restless Bandits.
  • [41]. Constraints Penalized Q-learning for Safe Offline Reinforcement Learning.
  • [42]. Q-Ball: Modeling Basketball Games Using Deep Reinforcement Learning.
  • [43]. Natural Black-Box Adversarial Examples against Deep Reinforcement Learning.
  • [44]. SimSR: Simple Distance-Based State Representations for Deep Reinforcement Learning.
  • [45]. State Deviation Correction for Offline Reinforcement Learning.
  • [46]. Multi-Agent Reinforcement Learning with General Utilities via Decentralized Shadow Reward Actor-Critic.
  • [47]. A Multi-Agent Reinforcement Learning Approach for Efficient Client Selection in Federated Learning.
  • [48]. Batch Active Learning with Graph Neural Networks via Multi-Agent Deep Reinforcement Learning.
  • [49]. Stackelberg Actor-Critic: Game-Theoretic Reinforcement Learning Algorithms.
  • [50]. Invariant Action Effect Model for Reinforcement Learning.
  • [51]. Locality Matters: A Scalable Value Decomposition Approach for Cooperative Multi-Agent Reinforcement Learning.
  • [52]. Concentration Network for Reinforcement Learning of Large-Scale Multi-Agent Systems.
  • [53]. A Deeper Understanding of State-Based Critics in Multi-Agent Reinforcement Learning.
  • [54]. Goal Recognition as Reinforcement Learning.
  • [55]. NICE: Robust Scheduling through Reinforcement Learning-Guided Integer Programming.
  • [56]. MAPDP: Cooperative Multi-Agent Reinforcement Learning to Solve Pickup and Delivery Problems.
  • [57]. Eye of the Beholder: Improved Relation Generalization for Text-Based Reinforcement Learning Agents.
  • [58]. Text-Based Interactive Recommendation via Offline Reinforcement Learning.
  • [59]. Multi-Agent Reinforcement Learning Controller to Maximize Energy Efficiency for Multi-Generator Industrial Wave Energy Converter.
  • [60]. Bayesian Model-Based Offline Reinforcement Learning for Product Allocation.
  • [61]. Reinforcement Learning for Datacenter Congestion Control.
  • [62]. Creating Interactive Crowds with Reinforcement Learning.
  • [63]. Using Graph-Aware Reinforcement Learning to Identify Winning Strategies in Diplomacy Games (Student Abstract).
  • [64]. Reinforcement Learning Explainability via Model Transforms (Student Abstract).
  • [65]. Using Reinforcement Learning for Operating Educational Campuses Safely during a Pandemic (Student Abstract).
  • [66]. Criticality-Based Advice in Reinforcement Learning (Student Abstract).
  • [67]. VeNAS: Versatile Negotiating Agent Strategy via Deep Reinforcement Learning (Student Abstract).

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/28153.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【构建ML驱动的应用程序】第 5 章 :训练和评估模型

🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎 📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃 🎁欢迎各位→点赞…

Linux 文件系统与inode,软硬链接

目录 磁盘的结构 磁盘的抽象(虚拟,逻辑)结构 分区 Block Group 块组: 分析: 文件名 vs inode编号 创建/删除/查看 一个文件,操作系统做了什么? 软硬链接 软连接 硬链接 对比&#xf…

Devart IBDac数据访问组件库

Devart IBDac数据访问组件库 IBDAC是一个完整的InterBase(和FireBird)数据访问组件库,用于将程序连接到FireBird、InterBase和Yaffil。该库有Dolphin、CBuilder、Lazarus和Free Pascal版本,可用于32/64位Windows、Mac OS X、iOS、Android、Linux和FreeBS…

Nacos Config--服务配置

目录 服务配置中心介绍 Nacos Config入门 Nacos Config深入 配置动态刷新 配置共享 nacos的几个概念 创建命名空间(Namespace) 命名空间 组 Nacos多环境切换 如何解决不同环境配置不同 如何解决不同环境配置相同 不同微服务相同配置共享 bootstrap 总结 服务配置…

融云 IM 和 RTC 服务,「助攻」智能物流等客户打通链路、完善生态

关注公众号报名融云&艾瑞“政企数智办公研究报告及新品发布会” 移动互联网时代,通信技术已经突破传统优势项“社交泛娱乐场景”的应用范围,在不同的业务中大放异彩,起到打通链路的关键作用。关注【融云全球互联网通信云】回复【融云】抽…

【数据挖掘】分类与回归预测

OutLine 章节概述1分类与预测2关于分类与预测中存在的问题3决策树分类4贝叶斯分类5BP网络分类6其他分类算法7预测8准确性与误差Chapter 1. 分类与预测 分类 预测分类标签,可以是离散数据或者是名义数据根据训练集和分类属性中的类标签对记录进行分类,…

【构建ML驱动的应用程序】第 6 章 :调试 ML 问题

🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎 📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃 🎁欢迎各位→点赞…

iTOP2K1000开发板Makefile文件

Makefile 就是描述了整个工程编译连接等规则的文件。 我们在终端输入完 make 命令之后,会调用 make 工具, make 就会在当前目录按照文件名就会找 makefile 文件, Makefile 的命名必须是 makefile 或 Makefile , m 大写小写都是可以…

ubuntu+Docker部署Django+Vue项目(1-Vue)

文章目录ubuntu安装下载Docker1.卸载(清除旧版本。没下载过也可以执行下试试)2.更新apt包索引并安装包,以允许apt通过HTTPS使用存储库3.添加Docker的官方GPG密钥4.使用以下命令设置存储库5.更新apt包索引6.安装最新版本的Docker Engine、containerd和Docker Compose…

概率论发展史上的几个重要悖论

1. 蒙提霍尔问题(三门问题) 三门问题(Monty Hall problem)亦称为蒙提霍尔问题、蒙特霍问题或蒙提霍尔悖论,大致出自美国的电视游戏节目Lets Make a Deal。问题名字来自该节目的主持人蒙提霍尔(Monty Hall&…

数字图像处理(十)腐蚀和膨胀

文章目录前言一、腐蚀1.概念2.算法的具体步骤3.举例4.python代码二、膨胀1.概念2.算法步骤3.举例4.C代码5. 结果展示参考资料前言 二值图像中一类主要处理是对提取的目标图形进行形态分析。形态学处理中最基本的是腐蚀和膨胀。   腐蚀和膨胀是两个互为对偶的运算。腐蚀的作用…

g++无法找到动态库问题

文章目录一、错误发现二、include两种查找方式三、路径1.gcc与g路径2.头文件路径(1)默认路径(2)使用-l指定路径寻找。(3)gcc搜索头文件的顺序3.库文件路径(1)默认路径(2)编译时指定路径(3)在配置文件中指定路径(4)通过环境变量(5)查找顺序一、错误发现 在使用各种各样的C库的时…

栈进阶:ElasticSearch

栈进阶:ElasticSearch 文章目录前言一、学习ES1、ES课程简介2、聊聊Lucene创始人3、ES概述1、历史2、谁在使用3、ELK简介4、Solr和ES的差别1、ES简介2、Solr简介3、Lucene简介4、ElasticSearch与Solr比较5、ES安装及head插件安装1、ES安装2、Window下安装3、安装可视…

【深入浅出Spring6】第十期——尾声

一、Spring集成了Junit 之前我们只是使用Junit的测试注解 Test&#xff0c;并没有使用Spring对于Junit的支持 Spring6既支持Junit4、也支持Spring5 要想使用Spring对于Junit的支持&#xff0c;我们需要在pom中导入相关依赖 <!--我们引入Spring对junit支持的依赖 >> …

[LeetCode/力扣][Java] 0315. 计算右侧小于当前元素的个数(Count of Smaller Numbers After Self)

题目描述&#xff1a; 给你一个整数数组 nums &#xff0c;按要求返回一个新数组 counts 。数组 counts 有该性质&#xff1a; counts[i] 的值是 nums[i] 右侧小于 nums[i] 的元素的数量。 示例1&#xff1a; 输入&#xff1a;nums [5,2,6,1] 输出&#xff1a;[2,1,1,0] 解释&…

CSS3------什么是css

什么是CSS 层叠样式表Cascading Style Sheets&#xff0c;缩写为CSS&#xff0c;是一种样式表语言&#xff0c;用来描述HTML或XML&#xff08;包括如SVG、MathML、XHTML 之类的XML 分支语言&#xff09;文档的呈现。 CSS描述了在屏幕、纸质、音频等其它媒体上的元素应该如何被…

uniapp之路由中携带参数跳转

目录 前言 一 路由跳转方式 1. 直接在 template中定义 2.直接在methods中定义 二 携带参数 1.在template中定义 2.在methods里定义 3. 拼接 前言 在我们写 uniapp 小程序时&#xff0c;时常遇到的就是路由携带参数进行跳转&#xff0c;这项功能似乎已成家常便饭一样&am…

(八)笔记.net core学习之特性Attribute声明、使用、验证

1.特性Attribute 特性&#xff1a;是用于在运行时传递程序中各种元素&#xff08;比如类、方法、结构、枚举、组件等&#xff09;的行为信息的声明性标签。您可以通过使用特性向程序添加声明性信息。一个声明性标签是通过放置在它所应用的元素前面的方括号&#xff08;[ ]&…

缺陷修改实践——replace函数的运用|思考?

目录介绍问题出现问题分析解决方法优化实现总结介绍 大家好&#xff0c;我是清风。今天给大家分享一个项目中遇到问题解决问题的案例&#xff0c;编程其实就是一个思考的过程&#xff0c;缺少思考就没有灵魂&#xff0c;遇到问题先静下心去思考&#xff0c;想到方法后再去实践。…

HTML小游戏11 —— 横版恐龙大冒险游戏(附完整源码)

&#x1f482; 网站推荐:【神级源码资源网】【摸鱼小游戏】&#x1f91f; 前端学习课程&#xff1a;&#x1f449;【28个案例趣学前端】【400个JS面试题】&#x1f485; 想寻找共同学习交流、摸鱼划水的小伙伴&#xff0c;请点击【摸鱼学习交流群】&#x1f4ac; 免费且实用的计…