若依AjaxResult的get(AjaxResult.CODE_TAG)有时返回的200,有时返回的字符串“200“

news2024/11/15 12:20:06

这个项目是多模块项目,之前通过web json格式,多模块之前传输用的RestTemplate,但是对接其它系统时要用XML就添加了XML的依赖。

原来

原来ajaxResult.get(AjaxResult.CODE_TAG).equals(200)能返回true

现在get(AjaxResult.CODE_TAG).equals(200)返回false

现在

现在get(AjaxResult.CODE_TAG).equals(200)返回false

现在get(AjaxResult.CODE_TAG).equals("200")返回true,很奇怪,必须得用字符串。

配置RestTemplate

@Configuration
public class AppConfig {
    @Bean
    public RestTemplate restTemplate() {
        RestTemplate restTemplate = new RestTemplate();

        // 确保添加了正确的HttpMessageConverter
        List<HttpMessageConverter<?>> messageConverters = new ArrayList<>();
        messageConverters.add(new MappingJackson2HttpMessageConverter());
        restTemplate.setMessageConverters(messageConverters);

        return restTemplate;
    }
}

配置后恢复正常了。

问题解析

添加XML依赖后,可能改变了RestTemplate默认的消息转换器(HttpMessageConverter)的行为或顺序。当你的服务接收到响应后,如果没有适当的配置,RestTemplate可能使用不适当的转换器处理响应数据,导致数据类型的差异。

  1. 原始行为:在添加XML依赖之前,可能MappingJackson2HttpMessageConverter(处理JSON)是默认的转换器,它将数字200(来自JSON响应)直接转换成Java中的Integer类型。
  2. 变化后的行为:添加XML依赖后,可能引入了额外的转换器(如处理XML的转换器),这可能影响了响应的解析方式。如果RestTemplate默认使用了一个将所有数字视为字符串的转换器,那么即使响应体中是数字200,它也可能被解析为字符串"200"。

解决方案

在AppConfig中显式设置了RestTemplate的消息转换器,只添加了MappingJackson2HttpMessageConverter。这确保了不论XML依赖如何,解析JSON时都将使用这个转换器。这个转换器将正确地将JSON中的数字200解析为Java的Integer,从而get(AjaxResult.CODE_TAG).equals(200)返回true。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2071398.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

3.2.6 盘古开天地start_kernel

点击查看系列文章 》 Interrupt Pipeline系列文章大纲-CSDN博客 3.2 内核初始化(盘古开天地) 3.2.1 内核初始化的神话 3.2.2 从头 (Head)开始 3.2.3 从头初始化到身体 3.2.4 宇之内存的空分复用 3.2.5 宙之CPU的时分复用 3.2.6 盘古开天地start_kernel 3.2.6 盘古开天地start_…

abc 366 E+F(曼哈顿距离 x y 两个坐标分别计算)(贪心+01背包)

E题&#xff1a; 题意&#xff1a;给定的 xi yi 。求有多少点 到给人 若干定点 的曼哈顿距离 和 小于等于D. 因为D 最大时 1e6,-1e6<xi<1e6。 所以 可能的 点 的 x 的范围是 [-2e6 2e6] 同理 y 的 范围 一样。 将 x y 分开讨论。 我们可以枚举 某个x 的 个数&#xff0…

聚类:k-Means 和 k-Medoid

1. 前言 在《对静态分析缺陷报告进行聚类&#xff0c;以降低维护成本》 提到使用 k-Medoid 通过相似缺陷的聚类&#xff0c;来减少程序员对大量缺陷分析的工作量。 k-Medoid 和传统的 k-Means 聚类算法有什么差别呢&#xff1f; 简单的说&#xff0c;K-Medoid 算法是一种基于…

golang RSA 解密前端jsencrypt发送的数据时异常 crypto/rsa: decryption error 解决方法

golang中 RSA解密前端&#xff08;jsencrypt&#xff09;发来的密文后出现 "crypto/rsa: decryption error" &#xff0c; 这个问题首先需要确认你的私匙和公匙是否匹配&#xff0c; 如果匹配 那检查入参数据类型&#xff0c; 前端发送来的rsa加密后的数据一般都是…

《黑神话:悟空》到底是用什么语言开发的

《黑神话&#xff1a;悟空》&#xff08;Black Myth: Wukong&#xff09;是一款由中国游戏开发公司游戏科学&#xff08;Game Science&#xff09;开发的动作角色扮演游戏。该游戏主要使用了以下技术栈&#xff1a; 开发引擎&#xff1a;游戏科学公司使用了**虚幻引擎5&#x…

blender--二维平面图标变为三维网格

有时候我们希望把一些二维图片能变成三维网格&#xff0c;本案例我们就针对这一场景进行实现。 首先我们可以先去找一张需要的图片(注意&#xff0c;本例需要图片是svg格式)&#xff0c;我们可以在阿里巴巴矢量图标库等平台进行搜索&#xff0c;如图所示&#xff0c;找到需要的…

Python优化算法12——蝴蝶优化算法(BOA)

科研里面优化算法都用的多&#xff0c;尤其是各种动物园里面的智能仿生优化算法&#xff0c;但是目前都是MATLAB的代码多&#xff0c;python几乎没有什么包&#xff0c;这次把优化算法系列的代码都从底层手写开始。 需要看以前的优化算法文章可以参考&#xff1a;Python优化算…

ProtoBuf简要介绍与快速上手使用(C++版)

文章目录 一、 初识ProtoBuf1. 序列化和反序列化概念2. ProtoBuf是什么3. ProtoBuf的使用特点 二、 讲解说明三、 快速上手1. 创建 .proto 文件2. 编译 contacts.proto 文件&#xff0c;生成C文件3. 序列化与反序列化的使用4. 小结 ProtoBuf 使用流程 一、 初识ProtoBuf 1. 序…

线程是什么?和进程区别是什么?怎么用?

目录 一、什么是进程 二、什么是线程 总结&#xff1a;线程和进程的区别&#xff1f; 三、线程的使用 四、线程的调用 一、什么是进程 进程&#xff0c;也叫任务。就是正常执行的程序。 一个程序有两种状态&#xff1a; 一是没有被执行&#xff0c;在硬盘上躺着的软件&…

Qt Example Callout Extention(about QChart/QGraphicsView/QGraphicsItem)

问题 Qt Example callout 展示了在平面直角坐标系中画tips。知识点涉及到QChart/QGraphicsView/QGraphicsItem。如何在平面直角坐标系中画点、折线、圆、长方形&#xff1f; Example路径 D:\Qt\5.15.2\Src\qtcharts\examples\charts\callout\callout.cpp 代码 main #incl…

C++ 有向图拓扑排序算法

代码 #include <algorithm> #include <cassert> #include <functional> #include <map> #include <memory> #include <queue> #include <set> #include <unordered_set> #include <vector>namespace jc {template <…

【JAVA基础】位运算

文章目录 位运算按位与操作按位或操作按位取反按位亦或 移位运算有符号左移有符号右移 位运算 处理数据的时候可以直接对组成整形数值的各个位完成操作 &|~^andornotxor 下面我们以byte类型为例子&#xff1a; 按位与操作 两个操作数&#xff0c;如果同为1则为1&#…

【JavaEE初阶】IP协议

目录 &#x1f4d5;引言 &#x1f334;IP协议的概念 &#x1f333;IP数据报 &#x1f6a9;IPv4协议头格式 &#x1f6a9;IPv6的诞生 &#x1f3c0;拓展 &#x1f384;IP地址 &#x1f6a9;IP地址的格式&#xff1a; &#x1f6a9;IP地址的分类 &#x1f3c0;网段划分…

【计算机三级-数据库技术】操作题大题(第七套)

第七套操作题 第46题 假定要建立一个关于篮球职业联盟的数据库&#xff0c;需管理如下信息&#xff1a; 每个球队有球队名称、所在城市&#xff1b; 每位球员有球员姓名、薪酬; 每场比赛有比赛编号、比赛时间、比赛结果、参加比赛的主场球队、参加比赛的客场球队。 其中带下划…

Redis—基础篇

Redis基础 1. Redis 简介2. Redis 应用3. Redis 数据结构3.1 String3.2 hash3.3 list3.4 set3.5 sorted set 4. Redis 为什么快&#xff1f;5. Redis I/O 多路复用6. Redis 6.0多线程 1. Redis 简介 Redis 是一种基于键值对的 NoSQL 数据库 Redis 中的 value 支持 string、ha…

关于jupyter notebook 的输出 (outputs )

jupyter notebook 的输出 (outputs )在元素达到一定的个数后&#xff0c;就会按一行一个元素进行展示&#xff0c;百来个还好&#xff0c;一旦过千&#xff0c;那滚轮势必撸冒烟&#xff0c;所以能不能解决呢&#xff1f; 先看个例子&#xff0c; 一个找质数、合数的函数 cal3&…

【Linux篇】vim编译器

1. 介绍 vi / vim是visual interface的简称&#xff0c;是Linux中最典型的文本编辑器。 同图形化界面中的文本编辑器一样&#xff0c;vi是命令行下对文本文件进行编辑的绝佳选择。 vim是vi的加强版本&#xff0c;兼容vi的所有指令&#xff0c;不仅能编译文本&#xff0c;而且…

排序补充之快排的三路划分法

排序补充之快排的三路划分法 快排性能的关键点分析&#xff1a; 决定快排性能的关键点是每次单趟排序后&#xff0c;key对数组的分割&#xff0c;如果每次选key基本⼆分居中&#xff0c;那么快 排的递归树就是颗均匀的满⼆叉树&#xff0c;性能最佳。但是实践中虽然不可能每次…

数学建模笔记(四):熵权

背景&基本思想介绍 在实际的评价类问题中&#xff0c;在前面所说的层次分析法以及Topsis法中&#xff0c;指标权重的确定往往是通过主观的评价得来的&#xff0c;如果在没有专家的情况下&#xff0c;我们自己的权重分配往往可能带有一定的主观性&#xff0c;有没有一种可以…

linux系统离线安装docker并配置阿里云镜像源

制作docker.service文件 创建docker.service文件 cd /etc/systemd/system/ touch docker.service编辑docker.service文件 vim docker.service// 注意&#xff0c;将其中的ip地址&#xff0c;改成您的服务器地址&#xff0c;其它参数不用改。 //--insecure-registry192.168.8…