字节二面:100Wqps短链系统,如何设计?

news2024/11/23 19:59:04

前段时间,社群小伙伴,在交流一个字节的二面真题:

100Wqps短链系统,怎么设计?

这道题,看上去业务简单,其实,覆盖的知识点非常多:

  • 高并发、高性能分布式 ID
  • Redis Bloom Filter 高并发、低内存损耗的 过滤组件知识
  • 分库、分表海量数据存储
  • 多级缓存的知识
  • HTTP传输知识
  • 二进制、十六进制、六十二进制知识

总体来说,高并发、高性能系统的核心领域,都覆盖了。所以,尼恩分析下来,得到一个结论:是一个超级好的问题。

现在把这个 题目,以及参考答案,收入咱们的 《尼恩Java面试宝典 PDF》
,供后面的小伙伴参考,提升大家的 3高 架构、设计、开发水平。

注:本文以 PDF 持续更新,最新尼恩 架构笔记、面试题 的PDF文件,请从这里获取:码云

1、短URL系统的背景:

短网址替代长URL,在互联网网上传播和引用。

例如QQ微博的url.cn,新郎的sinaurl.cn等。

在QQ、微博上发布网址的时候,会自动判别网址,并将其转换,例如:http://url.cn/2hytQx

为什么要这样做的,无外乎几点:

  1. 缩短地址长度,留足更多空间的给 有意义的内容
    URL是没有意义的,有的原始URL很长,占用有效的屏幕空间。
    微博限制字数为140字一条,那么如果这个连接非常的长,以至于将近要占用我们内容的一半篇幅,这肯定是不能被允许的,链接变短,对于有长度限制的平台发文,可编辑的文字就变多了, 所以短网址应运而生了。
  2. 可以很好的对原始URL内容管控。
    有一部分网址可以会涵盖XX,暴力,广告等信息,这样我们可以通过用户的举报,完全管理这个连接将不出现在我们的应用中,应为同样的URL通过加密算法之后,得到的地址是一样的。
  3. 可以很好的对原始URL进行行为分析
    我们可以对一系列的网址进行流量,点击等统计,挖掘出大多数用户的关注点,这样有利于我们对项目的后续工作更好的作出决策。
  4. 短网址和短ID相当于间接提高了带宽的利用率、节约成本
  5. 链接太长在有些平台上无法自动识别为超链接
  6. 短链接更加简洁好看且安全,不暴露访问参数。而且,能规避关键词、域名屏蔽等手段

2、短URL系统的原理:

短URL系统的核心: 将长的 URL 转化成短的 URL

客户端在访问系统时,短URL的工作流程如下:

  • 先使用短地址A访问 短链Java 服务
  • 短链Java 服务 进行 地址转换和映射,将 短URL系统映射到对应的长地址URL
  • 短链Java 服务 返回302 重定向 给客户端
  • 然后客户端再重定向到原始服务

如下图所示:

在这里插入图片描述

那么,原始URL如何变短呢?简单来说, 可以将原始的地址,使用编号进行替代

编号如何进一步变短呢? 可以使用更大的进制来表示

六十二进制表示法

顾名思义短网址就是非常短的网址,比如http://xxx.cn/EYyCO9T,其中核心的部分 EYyCO9T 只有7位长度。

其实这里的7位长度是使用62进制来表示的,就是常用的0-9、a-z、A-Z,也就是10个数字+26个小写+26个大写=62位。

那么7位长度62进制可以表示多大范围呢?

62^7 = 3,521,614,606,208 (合计3.5万亿),

说明:

10进制 最大只能生成 10 ^ 6 - 1 =99999916进制 最大只能生成 16 ^ 6 - 1 =1677721516进制里面已经包含了 A B C D E F 这几个字母
62进制 最大竟能生成 62 ^ 6 - 1 =56800235583个 基本上够了。
A-Z a-z 0-9 刚好等于62位

注意:

int(4个字节) ,存储的范围是-21亿到21亿
long(8个字节),存储的范围是-900万万亿 到 900万万亿

至于短网址的长度,可以根据自己需要来调整,如果需要更多,可以增加位数,

即使6位长度62^6也能达到568亿的范围,

这样的话只要算法得当,可以覆盖很大的数据范围。

在编码的过程中,可以按照自己的需求来调整62进制各位代表的含义。

一个典型的场景是, 在编码的过程中,如果不想让人明确知道转换前是什么,可以进行弱加密,

比如A站点将字母c表示32、B站点将字母c表示60,就相当于密码本了。

128进制表示法

标准ASCII 码也叫基础ASCII码,使用7 位二进制数(剩下的1位二进制为0),包含128个字符,

看到这里你或许会说,使用128进制(如果有的话)岂不是网址更短,

是的,

7 位二进制数(剩下的1位二进制为0)表示所有的大写和小写字母,数字0 到9、标点符号,以及在美式英语中使用的特殊控制字符 [1] 。

注意:

128个进制就可能会出现大量的不常用字符

比如 # % & * 这些,

这样的话,对于短链接而言,通用性和记忆性就变差了,

所以,62进制是个权衡折中。

3、短 URL 系统的功能分析:

假设短地址长度为8位,62的8次方足够一般系统使用了

系统核心实现,包含三个大的功能:

  • 发号
  • 存储
  • 映射

可以分为两个模块:发号与存储模块、映射模块

发号与存储模块

  • 发号:使用发号器发号 , 为每个长地址分配一个号码ID,并且需要防止地址二义,也就是防止同一个长址多次请求得到的短址不一样
  • 存储:将号码与长地址存放在DB中,将号码转化成62进制,用于表示最终的短地址,并返回给用户

映射模块

用户使用62进制的短地址请求服务 ,

  • 转换:将62进制的数转化成10进制,因为咱们系统内部是long 类型的10进制的数字ID
  • 映射:在DB中寻找对应的长地址
  • 通过302重定向,将用户请求重定向到对应的地址上

4、发号器的高并发架构:

回顾一下发号器的功能:

  • 为每个长地址分配一个号码ID
  • 并且需要防止地址歧义

以下对目前流行的分布式ID方案做简单介绍

方案1:使用地址的hash 编码作为ID

可以通过 原始Url的 hash编码,得到一个 整数,作为 短链的ID

哈希算法简单来说就是将一个元素映射成另一个元素,

哈希算法可以简单分类两类,

  • 加密哈希,如MD5,SHA256等,
  • 非加密哈希,如MurMurHash,CRC32,DJB等。

MD5算法

MD5消息摘要算法(MD5 Message-Digest Algorithm),一种被广泛使用的密码散列函数,

可以产生出一个128位(16字节)的散列值(hash value),

MD5算法将数据(如一段文字)运算变为另一固定长度值,是散列算法的基础原理。

由美国密码学家 Ronald Linn Rivest设计,于1992年公开并在 RFC 1321 中被加以规范。

CRC算法

循环冗余校验(Cyclic Redundancy Check)是一种根据网络数据包或电脑文件等数据,

产生简短固定位数校验码的一种散列函数,由 W. Wesley Peterson 于1961年发表。

生成的数字在传输或者存储之前计算出来并且附加到数据后面,然后接收方进行检验确定数据是否发生变化。

由于本函数易于用二进制的电脑硬件使用、容易进行数学分析并且尤其善于检测传输通道干扰引起的错误,因此获得广泛应用。

MurmurHash

MurmurHash 是一种非加密型哈希函数,适用于一般的哈希检索操作。

由 Austin Appleby 在2008年发明,并出现了多个变种,与其它流行的哈希函数相比,对于规律性较强的键,MurmurHash的随机分布特征表现更良好。

这个算法已经被很多开源项目使用,比如libstdc++ (4.6版)、Perl、nginx (不早于1.0.1版)、Rubinius、 libmemcached、maatkit、Hadoop、Redis,Memcached,Cassandra,HBase,Lucene等。

MurmurHash 计算可以是 128位、64位、32位,位数越多,碰撞概率越少。

所以,可以把长链做 MurmurHash 计算,可以得到的一个整数哈希值 ,

所得到的短链,类似于下面的形式

固定短链域名+哈希值 = www.weibo.com/888888888

如何缩短域名? 传输的时候,可以把 MurmurHash之后的数字为10进制,可以把数字转成62进制

www.weibo.com/abcdef

那么,使用地址的hash 编码作为ID的问题是啥呢?

会出现碰撞,所以这种方案不适合。

方案2:数据库自增长ID

属于完全依赖数据源的方式,所有的ID存储在数据库里,是最常用的ID生成办法,在单体应用时期得到了最广泛的使用,建立数据表时利用数据库自带的auto_increment作主键,或是使用序列完成其他场景的一些自增长ID的需求。

但是这种方式存在在高并发情况下性能问题,要解决该问题,可以通过批量发号来解决,

提前为每台机器发放一个ID区间 [low,high],然后由机器在自己内存中使用 AtomicLong 原子类去保证自增,减少对DB的依赖,

每台机器,等到自己的区间即将满了,再向 DB 请求下一个区段的号码,

为了实现写入的高并发,可以引入 队列缓冲+批量写入架构,

等区间满了,再一次性将记录保存到DB中,并且异步进行获取和写入操作, 保证服务的持续高并发。

比如可以每次从数据库获取10000个号码,然后在内存中进行发放,当剩余的号码不足1000时,重新向MySQL请求下10000个号码,在上一批号码发放完了之后,批量进行写入数据库。

但是这种方案,更适合于单体的 DB 场景,在分布式DB场景下, 使用 MySQL的自增主键, 会存在不同DB库之间的ID冲突,又要使用各种办法去解决,

总结一下, MySQL的自增主键生成ID的优缺点和使用场景:

  • 优点:
    非常简单,有序递增,方便分页和排序。
  • 缺点:
    分库分表后,同一数据表的自增ID容易重复,无法直接使用(可以设置步长,但局限性很明显);
    性能吞吐量整个较低,如果设计一个单独的数据库来实现 分布式应用的数据唯一性,
    即使使用预生成方案,也会因为事务锁的问题,高并发场景容易出现单点瓶颈。
  • 适用场景:
    单数据库实例的表ID(包含主从同步场景),部分按天计数的流水号等;
    分库分表场景、全系统唯一性ID场景不适用。

所以,高并发场景, MySQL的自增主键,很少用。

方案3:分布式、高性能的中间件生成ID

Mysql 不行,可以考虑分布式、高性能的中间件完成。

比如 Redis、MongoDB 的自增主键,或者其他 分布式存储的自增主键,但是这就会引入额外的中间组件。

假如使用Redis,则通过Redis的INCR/INCRBY自增原子操作命令,能保证生成的ID肯定是唯一有序的,本质上实现方式与数据库一致。

但是,超高并发场景,分布式自增主键的生产性能,没有本地生产ID的性能高。

总结一下,分布式、高性能的中间件生成ID的优缺点和使用场景:

  • 优点:
    整体吞吐量比数据库要高。
  • 缺点:
    Redis实例或集群宕机后,找回最新的ID值有点困难。
  • 适用场景:
    比较适合计数场景,如用户访问量,订单流水号(日期+流水号)等。

方案4:UUID、GUID生成ID

UUID:

按照OSF制定的标准计算,用到了以太网卡地址、纳秒级时间、芯片ID码和许多可能的数字。由以下几部分的组合:当前日期和时间(UUID的第一个部分与时间有关,如果你在生成一个UUID之后,过几秒又生成一个UUID,则第一个部分不同,其余相同),时钟序列,全局唯一的IEEE机器识别号(如果有网卡,从网卡获得,没有网卡以其他方式获得)

GUID:

微软对UUID这个标准的实现。UUID还有其它各种实现,不止GUID一种,不一一列举了。

这两种属于不依赖数据源方式,真正的全球唯一性ID

总结一下,UUID、GUID生成ID的优缺点和使用场景:

  • 优点:
    不依赖任何数据源,自行计算,没有网络ID,速度超快,并且全球唯一。
  • 缺点:
    没有顺序性,并且比较长(128bit),作为数据库主键、索引会导致索引效率下降,空间占用较多。
  • 适用场景:
    只要对存储空间没有苛刻要求的都能够适用,比如各种链路追踪、日志存储等。

方式5:snowflake算法(雪花算法)生成ID

snowflake ID 严格来说,属于 本地生产 ID,这点和 Redis ID、MongoDB ID不同, 后者属于远程生产的ID。

本地生产ID性能高,远程生产的ID性能低。

snowflake ID原理是使用Long类型(64位),按照一定的规则进行分段填充:时间(毫秒级)+集群ID+机器ID+序列号,每段占用的位数可以根据实际需要分配,其中集群ID和机器ID这两部分,在实际应用场景中要依赖外部参数配置或数据库记录。

总结一下,snowflake ID 的优缺点和使用场景:

  • 优点:
    高性能、低延迟、去中心化、按时间总体有序
  • 缺点:
    要求机器时钟同步(到秒级即可),需要解决 时钟回拨问题
    如果某台机器的系统时钟回拨,有可能造成 ID 冲突,或者 ID 乱序。
  • 适用场景:
    分布式应用环境的数据主键

高并发ID的技术选型

这里,不用地址的hash 编码作为ID

这里,不用数据库的自增长ID

这里,不用redis、mongdb的分布式ID

最终,

这里,从发号性能、整体有序(B+树索引结构更加友好)的角度出发,最终选择的snowflake算法

snowflake算法的吞吐量在 100W ops +

但是 snowflake算法 问题是啥呢?需要解决时钟回拨的问题。

如何解决时钟回拨的问题,可以参考 推特官方的 代码、 百度ID的代码、Shardingjdbc ID的源码,综合存储方案设计解决。

这块内容涉及多个组件的源码,内容繁多,请大家 自行去看尼恩 关于 100Wqps 推送中台相关的 讲义和视频。

5、数据存储的高并发架构:

这个数据,非常的结构化,可以使用结构化数据库MYSQL存储。

结构非常简单,我们会有二列:

1. ID,int,   // 分布式雪花id;

2. SURL,varchar,  // 原始URL;

接下来,开始高并发、海量数据场景,需要进行 MYSQL存储 的分库分表架构。

尼恩提示,这里可以说说自己的分库分表 操作经验,操作案例。

然后进行 互动式作答。

也就是,首先是进行 输入条件 询问,并且进行确认。

然后按照分治模式,进行两大维度的分析架构:

  • 数据容量(存储规模) 的 分治架构、
  • 访问流量 (吞吐量规模)的 分治架构。

这块内容涉的方案,不同的项目,基本是想通的,

具体的方案内容太多,

请大家 自行去看尼恩 关于 100Wqps 推送中台相关的 讲义和视频。

6、二义性检查的高并发架构:

所谓的地址二义性,就行同一个长址多次请求得到的短址不一样。

在生产地址的时候,需要进行二义性检查,防止每次都会重新为该长址生成一个短址,一个个长址多次请求得到的短址是不一样。

通过二义性检查,实现长短链接真正意义上的一对一。

怎么进行 二义性检查?

最简单,最为粗暴的方案是:直接去数据库中检查

但是,这就需要付出很大的性能代价。

要知道:

数据库主键不是 原始url,而是 短链url 。

如果根据 原始url 去进行存在性检查,还需要额外建立索引。

问题的关键是,数据库性能特低,没有办法支撑超高并发 二义性检查

所以,这里肯定不能每次用数据库去检查。

这里很多同学可能会想到另一种方案,就是 redis 的布隆过滤, 把已经生成过了的 原始url,

大致的方案是,可以把已经生成过的 原始url ,在 redis 布隆过滤器中进行记录。

每次进行二义性检查,走redis 布隆过滤器。

布隆过滤器就是bitset+多次hash的架构,宏观上是空间换时间,不对所有的 surl (原始url)进行内容存储,只对surl进行存在性存储,这样就节省大家大量的内存空间。

在数据量比较大的情况下,既满足时间要求,又满足空间的要求。

在这里插入图片描述

布隆过滤器的巨大用处就是,能够迅速判断一个元素是否在一个集合中。

布隆过滤器的常用使用场景如下:

  1. 黑名单 : 反垃圾邮件,从数十亿个垃圾邮件列表中判断某邮箱是否垃圾邮箱(同理,垃圾短信)
  2. URL去重 : 网页爬虫对 URL 的去重,避免爬取相同的 URL 地址
  3. 单词拼写检查
  4. Key-Value 缓存系统的 Key 校验 (缓存穿透) : 缓存穿透,将所有可能存在的数据缓存放到布隆过滤器中,当黑客访问不存在的缓存时迅速返回避免缓存及 DB 挂掉。
  5. ID 校验,比如订单系统查询某个订单 ID 是否存在,如果不存在就直接返回。

Bloom Filter 专门用来解决我们上面所说的去重问题的,使用 Bloom Filter 不会像使用缓存那么浪费空间。

当然,他也存在一个小小问题,就是不太精确。

规则是:存在不一定存在,说不存在一定不存在

Bloom Filter 相当于是一个不太精确的 set 集合,我们可以利用它里边的 contains 方法去判断某一个对象是否存在,但是需要注意,这个判断不是特别精确。

一般来说,通过 contains 判断某个值不存在,那就一定不存在,但是判断某个值存在的话,则他可能不存在。

那么对于 surl,处理的方案是:

  • 如果 redis bloom filter 不存在,直接生成
  • 否则,如果 redis bloom filter 判断为存在,可能是误判,还需要进行db的检查。

但是, redis bloom filter误判的概率很低,合理优化之后,也就在1%以下。

可能有小伙伴说,如果100Wqps,1%也是10W1ps,DB还是扛不住,怎么办?

可以使用缓存架构,甚至多级缓存架构

具体来说,可以使用 Redis 缓存进行 热门url的缓存,实现部分地址的一对一缓存

比如将最近/最热门的对应关系存储在K-V数据库中,比如在本地缓存 Caffeine中存储最近生成的长对短的对应关系,并采用过期机制实现 LRU 淘汰,从而保证频繁使用的 URL 的总是对应同一个短址的,但是不保证不频繁使用的URL的对应关系,从而大大减少了空间上的消耗。

7、映射模块(/转换模块)的高并发架构

这里,主要是介绍自己对 多级缓存的 掌握和了解。

可以使用了缓存,二级缓存、三级缓存,加快id 到 surl的转换。

简单的缓存方案:

将热门的长链接(需要对长链接进来的次数进行计数)、最近的长链接(可以使用 Redis 保存最近一个小时的数据)等等进行一个缓存,如果请求的长URL命中了缓存,那么直接获取对应的短URL进行返回,不需要再进行生成操作

复杂的缓存方案:

方案非常复杂

具体,请参考尼恩的第26章视频《100Wqps 三级缓存架构和实操》

补充服务间的重定向301 和 302 的不同:

301永久重定向和 302 临时重定向。

  • 301永久重定向:第一次请求拿到长链接后,下次浏览器再去请求短链的话,不会向短网址服务器请求了,而是直接从浏览器的缓存里拿,减少对服务器的压力。
  • 302临时重定向:每次去请求短链都会去请求短网址服务器(除非响应中用 Cache-Control 或 Expired 暗示浏览器进行缓存)

使用 301 虽然可以减少服务器的压力,但是无法在 server 层获取到短网址的访问次数了,如果链接刚好是某个活动的链接,就无法分析此活动的效果以及用于大数据分析了。

而 302 虽然会增加服务器压力,但便于在 server 层统计访问数,所以如果对这些数据有需求,可以采用 302,因为这点代价是值得的,但是具体采用哪种跳转方式,还是要结合实际情况进行选型。

8、架构的魅力

架构魅力,在于没有最好的方案,只有更好的方案

大家如果有疑问,或者更好的方案,可以多多交流,

此题,后面的答案,也会不断的完善和优化

注:本文以 PDF 持续更新,最新尼恩 架构笔记、面试题 的PDF文件,请从这里获取:码云

参考文章:

https://www.zhihu.com/question/29270034/answer/46446911

https://cloud.tencent.com/developer/article/1451239

https://www.cnblogs.com/jobs2/p/3301955.html

推荐阅读:

《峰值21WQps、亿级DAU,小游戏《羊了个羊》是怎么架构的?》

《场景题:假设10W人突访,你的系统如何做到不 雪崩?》

《2个大厂 100亿级 超大流量 红包 架构方案》

《Nginx面试题(史上最全 + 持续更新)》

《K8S面试题(史上最全 + 持续更新)》

《操作系统面试题(史上最全、持续更新)》

《Docker面试题(史上最全 + 持续更新)》

《Springcloud gateway 底层原理、核心实战 (史上最全)》

《Flux、Mono、Reactor 实战(史上最全)》

《sentinel (史上最全)》

《Nacos (史上最全)》

《TCP协议详解 (史上最全)》

《分库分表 Sharding-JDBC 底层原理、核心实战(史上最全)》

《clickhouse 超底层原理 + 高可用实操 (史上最全)》

《nacos高可用(图解+秒懂+史上最全)》

《队列之王: Disruptor 原理、架构、源码 一文穿透》

《环形队列、 条带环形队列 Striped-RingBuffer (史上最全)》

《一文搞定:SpringBoot、SLF4j、Log4j、Logback、Netty之间混乱关系(史上最全)》

《单例模式(史上最全)》

《红黑树( 图解 + 秒懂 + 史上最全)》

《分布式事务 (秒懂)》

《缓存之王:Caffeine 源码、架构、原理(史上最全,10W字 超级长文)》

《缓存之王:Caffeine 的使用(史上最全)》

《Java Agent 探针、字节码增强 ByteBuddy(史上最全)》

《Docker原理(图解+秒懂+史上最全)》

《Redis分布式锁(图解 - 秒懂 - 史上最全)》

《Zookeeper 分布式锁 - 图解 - 秒懂》

《Zookeeper Curator 事件监听 - 10分钟看懂》

《Netty 粘包 拆包 | 史上最全解读》

《Netty 100万级高并发服务器配置》

《Springcloud 高并发 配置 (一文全懂)》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/189201.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

考虑电动汽车灵活性的微网多时间尺度协调调度研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

【Qt】2.Qt坐标系、信号和槽、Lambda表达式

目录 Qt坐标系 信号和槽 需求 优点 自定义信号 自定义槽函数 触发自定义信号 代码 main.cpp widget.h widget.cpp teachar.h teachar.cpp student.h student.cpp 结果 重载 解决方法 信号和槽拓展 断开信号和槽 触发多个槽函数 Lambda表达式 [] () {}…

【数据结构与算法】DP路径问题

问题:最小路径和 给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。 说明:每次只能向下或者向右移动一步。 示例 1: 输入:grid [[1,3,1],[1,5,…

二叉树28:二叉搜索树的最近公共祖先

主要是我自己刷题的一些记录过程。如果有错可以指出哦,大家一起进步。 转载代码随想录 原文链接: 代码随想录 leetcode链接:235. 二叉搜索树的最近公共祖先 题目: 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。…

对于Go 语言的进阶与依赖管理| 青训营笔记

一.Go 语言进阶与依赖管理 1.1并发和并行 Go可以充分发挥多核优势,高效运行。 多线程程序在单核心的 cpu 上运行,称为并发; 多线程程序在多核心的 cpu 上运行,称为并行。 并发与并行并不相同,并发主要由切换时间片…

2016年专业408算法题

文章目录0 结果1 题目2 思路2.1 思路1(较优解:排序)2.2 思路2(最优解:类快排思想排序)附录0 结果 较优解: 最优解: 1 题目 2 思路 为了使|n1−n2|&#…

1.2.3存储结构:主存编址计算、主存编址的过程、存储单元、编址内容、存储总容量

1.2.3存储结构:主存编址计算、主存编址的过程、存储单元、编址内容、存储总容量主存编址的过程存储单元主存编址存储单元编址内容存储总容量例题主存编址的过程 计算机是一个机器,它能够识别的是机器语言,电器信号。因此计算机当中所有的数据…

英语学习 2

1 词汇积累 1、imply and infer 暗示和推断 2、indicate 显示、指出 3、outgoing 外向的 4、sympathy 同情心 5、sympathetic 有同情心的 6、evolution 进化 8、agreement 一致 10、resourceful 足智多谋的 11、appear 似乎 12、manufacturers 厂家、制造商 13、toilet paper …

linux定时器crond使用方式简介

文章目录一、简介二、cron.d下文件示例三、被调用的脚本文件四、检查脚本是否执行五、遇到的脚本未执行的情况一、简介 一般来说在/etc目录下,有5个以cron开头的目录,分别是/etc/cron.hourly,/etc/cron.daily,/etc/cron.weekly&a…

java泛型6

到底何时使用泛型方法?何时使用类型通配符呢?大多数时候都可以使用泛型方法来代替类型通配符。 这种场景下效果一样。 上面方法使用了泛型形式,这时定义泛型形参时设定上限(其中E是Collection接口里定义的泛型,在该接…

搭建企业知识库的意义

当客户跟你达成合作关系后,需要持续的关系维护,在一定的销售点,定期和客户沟通,据调查,赢得一个新客户的成本可能是保留一个现有客户的5到25倍,作为营销策略,客户服务支持必须满足他们的期望。建…

Java---微服务---Seata的部署和集成

Seata的部署和集成一、部署Seata的tc-server1.下载2.解压3.修改配置4.在nacos添加配置5.创建数据库表6.启动TC服务二、微服务集成seata1.引入依赖2.修改配置文件三、TC服务的高可用和异地容灾1.模拟异地容灾的TC集群2.将事务组映射配置到nacos3.微服务读取nacos配置一、部署Sea…

PEM格式RSA密钥解析(二)

PEM格式RSA密钥解析(二) RSA密钥参数解析 上一部分讲解了将Base64编码的密钥数据转换成hex格式数据,本章将介绍如何获从转码后的数据中获取RSA密钥的相关参数。 根据 RSA 密钥语法中的结构对私钥解析结果如下: 上一节转码后的私…

暗月ACK靶场 WP

环境搭建 https://mp.weixin.qq.com/s/VB4elHdrHNCmPDP_ktcLRg https://www.bilibili.com/video/BV1264y187St?spm_id_from333.1007.top_right_bar_window_history.content.click 按照文章拓扑根据实际情况搭建好,web2的其中一个网卡需要自己调一下ip 1、把 12s…

第五届字节跳动青训营 前端进阶学习笔记(十)Webpack基础

文章目录前言什么是Webpack1.Webpack概述2.Webpack基本使用Webpack打包核心流程1.webpack需要做的事情2.Webpack的使用3.处理CSS4.接入babel5.生成HTML6.HMR7.Tree-ShakingLoader1.Loader的主要特性2.常见Loader总结前言 课程重点: 什么是WebpackWebpack打包核心流…

本地启动打包后文件

本地启动打包后文件在 vs code 扩展中安装 Live Server配置 Live Server在 vs code 扩展中安装 Live Server 点击安装 Live Server 配置 Live Server VS Code setting.json 中配置 Vue/React 打包后文件夹 build/dist 为服务器的根目录 "liveServer.settings.root"…

AOP实例 – 环绕增强 日志记录

AOP实例 – 环绕增强 日志记录需求:记录图书的service层的日志操作,到数据库1. 创建商品日志记录表 Book_Log2. 完成日志记录表的插入逻辑3. 环绕增强搜集日志记录参数,并测试4. 环绕增强调用日志记录表的插入逻辑,完成日志记录功…

【目标检测论文解读复现NO.29】基于YOLO-ST的安全帽佩戴精确检测算法

前言此前出了目标改进算法专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读最新目标检测算法论文,…

Spire.Barcode 5.1.0 for Java Patch

Spire.Barcode for Java是专门为开发人员设计的专业条码组件,用于在 Java 应用程序(J2SE 和 J2EE)上生成、读取和扫描 一维和二维条码。开发人员和程序员可以使用 Spire.Barcode 快速轻松地将企业级条码格式添加到他们的 Java 应用程序中。需…

【数字逻辑】逻辑函数式化简为其他形式

以 F(A,B,C)ABA‾CF(A,B,C) AB\overline{\rm A}CF(A,B,C)ABAC 为例,说明如何将与或式转换为其它类型的表达式。