数据分析中的上采样和下采样
背景: 在分类问题中,由于各种原因,我们所获取到的数据集很容易出现正负样本的不平衡,或者某些数据特别多,有些数据则特别少,在这样的数据集中,进行训练,我们很难获得较好的训练结果,为此我们引入了上采样与下采样解决样本不平衡的问题。
解决方法,采用Imblearn包
pip install imblearn
上采样(把数量少的增加到与数量多的相近)
随机下采样
#使用make_classification生成样本数据
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=5000, n_features=2, n_informative=2,
n_redundant=0, n_repeated=0, n_classes=3,
n_clusters_per_class=1,
weights=[0.01, 0.05, 0.94],
class_sep=0.8, random_state=0)
SMOTE模型
- 对于少数类中每一个样本x,以欧氏距离为标准计算它到少数类样本集中所有样本的距离,得到其k近邻
- 根据样本不平衡比例设置一个确定采样倍率N,对于每一个少数类样本x,从其k近邻中随机选择若干个样本,假设选择的近邻为xn
- 对于每一个随机选出来的近邻xn,分别与原样本按照如下的公式构建新的样本
#SMOTE过采样
from imblearn.over_sampling import SMOTE, ADASYN
X_resampled, y_resampled = SMOTE().fit_resample(X, y)
print(sorted(Counter(y_resampled).items()))
ADASYN
#ADASYN过采样
X_resampled, y_resampled = ADASYN().fit_resample(X, y)
print(sorted(Counter(y_resampled).items()))
- SMOTE: 对于少数类样本a, 随机选择一个最近邻的样本b, 然后从a与b的连线上随机选取一个点c作为新的少数类样本;
- ADASYN: 关注的是在那些基于K近邻分类器被错误分类的原始样本附近生成新的少数类样本;
下采样(把数量多的减少到与数量少的相近)
Prototype generation
#欠采样
from imblearn.under_sampling import ClusterCentroids
cc = ClusterCentroids(random_state=0)
X_resampled, y_resampled = cc.fit_resample(X, y)
print(sorted(Counter(y_resampled).items()))
随机下采样
#随机欠采样
from imblearn.under_sampling import RandomUnderSampler
rus = RandomUnderSampler(random_state=0)
X_resampled, y_resampled = rus.fit_resample(X, y)
print(sorted(Counter(y_resampled).items()))
组合采样
#两种组合采样的方法
from collections import Counter
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=5000, n_features=2, n_informative=2,
n_redundant=0, n_repeated=0, n_classes=3,
n_clusters_per_class=1,
weights=[0.01, 0.05, 0.94],
class_sep=0.8, random_state=0)
print(sorted(Counter(y).items()))
from imblearn.combine import SMOTEENN
smote_enn = SMOTEENN(random_state=0)
X_resampled, y_resampled = smote_enn.fit_resample(X, y)
print(sorted(Counter(y_resampled).items()))
from imblearn.combine import SMOTETomek
smote_tomek = SMOTETomek(random_state=0)
X_resampled, y_resampled = smote_tomek.fit_resample(X, y)
print(sorted(Counter(y_resampled).items()))