本篇的思维导图:
卷积神经网络的定义
卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connectivity)和权重共享(weight shared)的特点,而且其中的过滤器可以做到对图像关键特征的抽取。因为这一特点,卷积神经网络在图像识别方面能够给出更好的结果。
卷积网络的结构
卷积网络的典型架构:卷积网络识别MNIST图像
上图实现了一个图像分类功能:输入的是图像,输出的是图像
本篇的思维导图:
卷积神经网络的定义
卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connectivity)和权重共享(weight shared)的特点,而且其中的过滤器可以做到对图像关键特征的抽取。因为这一特点,卷积神经网络在图像识别方面能够给出更好的结果。
卷积网络的结构
卷积网络的典型架构:卷积网络识别MNIST图像
上图实现了一个图像分类功能:输入的是图像,输出的是图像
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/165439.html
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!