Python量化择时的技术指标函数

news2024/11/23 15:21:00

Python量化择时的技术指标函数

技术指标通过对原始数据(开盘价、收盘价、最低价、最高价、成交量、成交金额、成交笔数)的处理,来反映出市场的某一方面深层的内涵,这些内涵是很难通过原始数据直接看出来的。技术指标能客观地反映某些既成过去的事实,将某些市场的数据形象化、直观化,将某些分析理论数量化和精细化。

量化择时概述

量化择时是指利用数量化的方法,通过各种技术分析的量化分析,找到自选股中的股票的买点和卖点时机。在各种技术分析中,技术指标是非常重要的量化分析手段,也是最常用的量化分析工具。

目前,应用于股市的技术指标有几百种,按照不同的计算原理和反映状况,可大致分4类,分别是趋向指标、压力支撑指标和量价指标。如下图所示:

mindmap

  1. 趋向指标(Trend Indicators):

趋向指标是用来显示市场趋势方向和强度的技术指标。常见的趋向指标包括移动平均线(如简单移动平均线和指数移动平均线)和趋势线(如斜率趋势线和通道趋势线)。趋向指标可以帮助交易者识别市场的上升、下降或横盘趋势。

  1. 反趋向指标(Oscillators):

反趋向指标是用来辅助判断市场超买和超卖状态的技术指标。典型的反趋向指标包括相对强弱指数(RSI)、随机指标(Stochastic Oscillator)和平均真实区间指数(Average True Range, ATR)。这些指标可帮助投资者确定何时市场可能过热或过冷,从而作出更明智的交易决策。

  1. 压力支撑指标(Support and Resistance Indicators):

压力支撑指标是用来标识股价可能会遇到阻力或支撑的水平的技术指标。这些指标包括移动平均线、布林带(Bollinger Bands)、波动率通道等。支撑线代表价格下跌受到支持的水平,而阻力线则表示价格上涨受到阻碍的水平。

  1. 量价指标(Volume-Price Indicators):

量价指标是通过比较交易量和价格的变化来帮助投资者评估市场情绪和趋势的指标。典型的量价指标包括成交量指标、积极成交量指标(Accumulation/Distribution Line)、相对量力指数(On-Balance Volume, OBV)等。这些指标能够提供有关市场参与者活动水平的信息,有助于确认价格走势的可靠性。

这些技术指标在股市中被广泛使用,但需要注意,技术指标的单独使用可能并不总是有效的,应结合其他分析方法和市场情况进行综合考虑。

趋向指标函数

趋向指标是投资者最容易在市场中获利的方法,也是股票、期货、外汇市场中最为著名的格言“让利润充分增长、限制损失”的真实反映。

MACD指标函数

MACD指标,即平滑异同平均线。在Python量化炒股策略中,平滑异同平均线MACD的语法格式如下:

MACD(security_list, check_date, SHORT=12, LONG=26,MID=9)

各参数意义如下:

security_list:股票列表,可以是一只股票,也可是多只股票

check_date:要查询数据的日期

SHORT:统计的天数SHORT

LONG:统计的天数LONG

MID:统计的天数MID

返回DIF、DEA和MACD的值,返回类型为字典(dict),键(key)为股票代码,值(value)为数据。

平滑异同平均线MACD用法具体如下:

第一,DIFF、DEA均为正,DIFF向上突破DEA,买入信号

第二,DIFF、DEA均为负,DIFF向下跌破DEA,卖出信号

第三,DEA线与K线发生 背离,行情反转信号

第四,分析MACD柱状线,由红变绿(正变负),卖出信号;由绿变红,买入信号

单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台,然后单击“新建”按钮,创建Python3文件,输入如下代码:

# 导入technical_analysis库
from jqlib.technical_analysis import *
# 定义股票池列表
security_list1 = '002465.XSHE'
# 计算并输出security_list1的MACD值
macd_diff, macd_dea, macd_macd = MACD(security_list1, check_date='2024-04-26', SHORT=12, LONG=26,MID=9)
print('海格通信的MACD指标的DIFF值:', macd_diff[security_list1])
print('海格通信的MACD指标的DEA值:',macd_dea[security_list1])
print('海格通信的MACD指标的MACD值:', macd_macd[security_list1])

首先导入technical_analysis库,这样才可以使用函数MACD()。在这里定义计算的股票为海格通信,接着就调用函数MACD(),获得DIF、DEA和MACD的值,最后利用print()函数显示。

单击工具栏中的运行按钮,快捷键(shift+enter),运行结果如下图所示:

Screenshot 2024-04-29 at 17.13.56

利用函数MACD()获得DIF、DEA和MACD的值后,就可以量化择时,进行股票的买卖操作。例如,DIFF、DEA均为正,DIFF向上突破D EA,买入信号,转为Python代码如下:

macd_diff[security_list1] > 0
macd_dea[security_list1] > 0
macd_diff[security_list1] > macd_dea[security_list1]

DIFF、DEA均为负,DIFF向下跌破DEA,卖出信号,转为Python代码如下:

macd_diff[security_list1] < 0
macd_dea[security_list1] < 0
macd_diff[security_list1] < macd_dea[security_list1]
EMV指标函数

EMV指标,即简易波动指标。在Python量化炒股策略中,简易波动指标EMV的语法格式如下:

EMV(security_list, check_date, N = 14, M = 9)

其中,security_list和check_date参数与MACD指标相同。

参数N和M表示统计的天数N和统计的天数M。

返回EMV和MAEMV的值,返回类型也与MACD指标相同。简易波动指标EMV用法具体如下:

第一,EMV由下往上穿越0轴时,视为中期买进信号。

第二,EMV由上往下穿越0轴时,视为中期卖出信号。

第三,EMV的平均线穿越0轴,产生假信号的机会较少。

需要注意的是,须长期使用EMV指标才能获得最佳利润。单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台。然后单击“新建”按钮,创建Python3文件,输入如下代码:

# 导入technical_analysis库
from jqlib.technical_analysis import *
# 定义股票池列表
security_list1 = ['000001.XSHE', '000002.XSHE', '601211.XSHG', '603177.XSHG']
# 计算并输出 security_list1的EMV值
EMV1,MAEMV1 = EMV(security_list1, check_date='2024-04-26', N=14, M=9)
for stock in security_list1:
    print(EMV1[stock])
    print(MAEMV1[stock])

注意:这里显示多只股票的EMV指标的参数值,要使用for循环语句显示

单击工具栏运行按钮,快捷键(shift+enter),运行结果如下图:

Screenshot 2024-04-29 at 17.37.09

UOS指标函数

UOS指标,即终极指标。其语法格式如下:

UOS(security_list, check_date, N1=7, N2=14,N3=28,M=6)

其中, security_list和check_date参数与MACD指标相同。

参数N1、N2、N3和M分别表示统计的天数N1、N2、N3以及统计的天数M。返回终极指标和MAUOS的值,返回类型也与MACD指标相同。终极指标UOS用法具体如下:

第一,UOS上升至50~70之间,而后向下跌破其N字曲线低点时,为短线卖点。

第二,UOS上升超过70,而后向下跌破70时,为中线卖点。

第三,UOS下跌至45以下,而后向上突破其N字曲线高点时,为短信买点。

第四,UOS下跌至35以下,产生一底比一底高的背离现象时,为底部特征。

单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台,然后单击“新建”按钮,创建Python3文件,接着输入如下代码:

# 导入technical_analysis库
from jqlib.technical_analysis import *
# 定义股票池列表
security_list1 = '002465.XSHE'
# 计算并输出security_list1的UOS值
uos_ultiInc, uos_mauos = UOS(security_list1, check_date='2024-04-26', N1=7, N2=14, N3=28,M=6)
print('海格通信的终极指标UOS的终极指标值:',uos_ultiInc[security_list1])
print('海格通信的终极目标UOS的MAUOS的值:', uos_mauos[security_list1])

单击工具栏运行按钮,快捷键(shift+enter),运行结果如下图:

Screenshot 2024-04-29 at 19.06.51

GDX指标函数

GDX指标,即鬼道线,语法格式如下:

GDX(security_list, check_date, N=30,M=9)

其中,security_list和check_date参数与MACD指标相同。

参数N和M分别表示统计的天数N和统计的天数M

返回济安线、压力线和支撑线的值,返回类型也与MACD指标相同。

鬼道线指标GDX,是一种用技术手段和经验判断来决定买卖股票的方法。该公式对趋势线做了平滑和修正处理,更精确地反映了股价运行规律。

当股价上升到压力线时,投资者就卖出股票。

当股价下跌到支撑线时,投资者就进行相应的补进。单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台,然后单击“新建”按钮,创建Python3文件,接着输入如下代码:

# 导入technical_analysis库
from jqlib.technical_analysis import *
# 定义股票池列表
security_list1 = '002465.XSHE'
security_list2 = ['002465.XSHE', '002540.XSHE', '600108.XSHG']
# 计算并输出security_list1的GDX值
gdx_jax, gdx_ylx, gdx_zcx = GDX(security_list1, check_date='2024-04-26', N=30, M=9)
print('海格通信的济安线的值:', gdx_jax[security_list1])
print('海格通信的压力线的值:',gdx_ylx[security_list1])
print('海格通信的支撑线的值:', gdx_zcx[security_list1])

# 输出security_list2的GDX值
gdx_jax, gdx_ylx, gdx_zcx = GDX(security_list2, check_date='2024-04-26', N=30, M=9)
print('\n\n海格通信、亚太科技、亚盛集团的济安线、压力线和支撑线的值:\n')
for stock in security_list2:
    print(gdx_jax[stock])
    print(gdx_ylx[stock])
    print(gdx_zcx[stock])

单击工具栏运行按钮,快捷键(shift+enter),运行结果如下图:

Screenshot 2024-04-29 at 19.16.54

JS指标函数

JS指标,即加速线。其语法格式如下:

JS(security_list, check_date, N=5, M1=5,M2=10,M3=20)

其中,security_list和check_date参数与MACD指标相同。

参数N1、M1、M2和M3表示统计的天数。返回JS、MAJS1、MAJS2和MAJS3的值,返回类型也与MACD指标相同。

加速线指标是衡量股价涨速的工具,加速线指标上升表明股价上升动力增加,加速线指标下降表明股价下降压力增加。

加速线适用于DMI表明趋势明显时(DMI.ADX大于20)使用:

第一、如果加速线在0值附近形成平台,则表明既不是最好的买入时机也不是最好的卖出时机;

第二,在加速线发生金叉后,均线形成底部是买入时机。

第三,在加速线发生死叉后,均线形成顶部是卖出时机。

当股价下跌到支撑线时,投资者就进行相应的补进。单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台,然后单击“新建”按钮,创建Python3文件,接着输入如下代码:

#导入technical_analysis库
from jqlib.technical_analysis import *
# 定义股票池列表
security_list1 = ['002465.XSHE', '002540.XSHE', '600108.XSHG']
# 输出security_list2的JS值
js_jsx, js_majsx1, js_majsx2, js_majsx3 = JS(security_list1, check_date='2024-04-26', N=5,M1=5,M2=10,M3=20)
for stock in security_list1:
    print(js_jsx[stock])
    print(js_majsx1[stock])
    print(js_majsx2[stock])
    print(js_majsx3[stock])

单击工具栏运行按钮,快捷键(shift+enter),运行结果如下图:

Screenshot 2024-04-29 at 19.35.59

MA指标函数

MA指标,即均线,其语法格式如下:

MA(security_list, check_date, timeperiod=5)

其中,security_list和check_date参数与MACD指标相同。

参数timeperiod表示统计的天数。返回MA的值,返回类型也与MACD指标相同。

均线MA指标用法具体如下:

第一,股价高于平均线,视为强势;股价低于平均线,视为弱势;

第二,平均线向上涨升,具有助涨力道;平均线向下跌降,具有助跌力道;

第三,2条以上平均线向上交叉时,买进;

第四,2条以上平均线向下交叉时,卖出;

第五,移动平均线的信号经常落后股价,若以EXPMA、VMA辅助,可以改善。

当股价下跌到支撑线时,投资者就进行相应的补进。单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台,然后单击“新建”按钮,创建Python3文件,接着输入如下代码:

# 导入technical_analysis库
from jqlib.technical_analysis import *
# 定义股票池列表
security_list1 = '002465.XSHE'
# 计算并输出security_list1的MA值
MA1 = MA(security_list1, check_date='2024-04-26', timeperiod=5)
MA2 = MA(security_list1, check_date='2024-04-26', timeperiod=10)
MA3 = MA(security_list1, check_date='2024-04-26', timeperiod=30)
print('海格通信的5日均线:', MA1[security_list1])
print('海格通信的10日均线:', MA2[security_list1])
print('海格通信的30日均线:', MA3[security_list1])

单击工具栏运行按钮,快捷键(shift+enter),运行结果如下图:

Screenshot 2024-04-29 at 19.48.16

EXPMA的指标函数

EXPMA指标,即指数平均线。其语法格式如下:

EXPMA(security_list, check_date,timeperiod=12)

其中,security_list和check_date参数与MACD指标相同。

参数timeperiod表示统计的天数。返回EXPMA的值,返回类型也与MACD指标相同。

指数平均线EXPMA指标用法具体如下:

第一,EXPMA一般以观察12日和50日2条均线为主。

第二,12日指数平均线向上交叉50日指数平均线时,买进;

第三,12日指数平均线向下交叉50日指数平均线时,卖出。

当股价下跌到支撑线时,投资者就进行相应的补进。单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台,然后单击“新建”按钮,创建Python3文件,接着输入如下代码:

# 导入technical_analysis库
from jqlib.technical_analysis import *
security_list1 = ['002465.XSHE', '002540.XSHE', '601108.XSHG']
# 输出security_list2的EXPMA值
EXPMA1 = EXPMA(security_list1, check_date='2024-04-26', timeperiod=12)
for stock in security_list1:
    print(EXPMA1[stock])

单击工具栏运行按钮,快捷键(shift+enter),运行结果如下图:

Screenshot 2024-04-29 at 19.58.02

VMA指标函数

VMA指标,即变异平均线,语法格式如下:

VMA(security_list, check_date, timeperiod=12)

其中,security_list和check_date参数与MACD指标相同。

参数time period,表示统计的天数。返回VMA的值,返回类型也与MACD指标相同。

变异平均线VMA指标用法具体如下:

第一,股价高于平均线,视为强势;股价低于平均线,视为弱势。

第二,平均线向上涨升,具有助涨力道;平均线向下跌降,具有助跌力道

第三,2条以上平均线向上交叉时,买进。

第四,2条以上平均线向下交叉时,卖出。

当股价下跌到支撑线时,投资者就进行相应的补进。单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台,然后单击“新建”按钮,创建Python3文件,接着输入如下代码:

# 导入technical_analysis库
from jqlib.technical_analysis import *
# 定义股票池列表,调用get_concept_stocks函数,获取风力发电概念板块的成分股
security_list1 = get_concept_stocks('SC0034')
# 输出security_list1的12日变异平均线值
VMA1 = VMA(security_list1, check_date='2024-04-26', timeperiod=12)
for stock in security_list1:
    print(VMA1[stock])

单击工具栏运行按钮,快捷键(shift+enter),运行结果如下图:

Screenshot 2024-04-29 at 20.29.38

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1641187.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

力扣763. 划分字母区间

Problem: 763. 划分字母区间 文章目录 题目描述思路复杂度Code 题目描述 思路 1.创建一个名为 last 的数组&#xff0c;用于存储每个字母在字符串 s 中最后出现的位置。然后&#xff0c;获取字符串 s 的长度 len。 2.计算每个字母的最后位置&#xff1a;遍历字符串 s&#xff0…

springboot整合mybatis配置多数据源(mysql/oracle)

目录 前言导入依赖坐标创建mysql/oracle数据源配置类MySQLDataSourceConfigOracleDataSourceConfig application.yml配置文件配置mysql/oracle数据源编写Mapper接口编写Book实体类编写测试类 前言 springboot整合mybatis配置多数据源&#xff0c;可以都是mysql数据源&#xff…

R语言数据探索与分析-运用时间序列预测模型对成都市API进行预测分析

一、研究背景 “绿水青山就是金山银山&#xff0c;要让绿水青山变成金山银山”让人们深刻的意识到环境的重要性。与此同时&#xff0c;由于现代生活水平的不断提高&#xff0c;所带来的环境污染也不断增多&#xff0c;空气以及环境的污染带来了越来越多的疾病&#xff0c;深刻…

SVM单类异常值检测

SVM是一种广泛使用的分类器&#xff0c;通常用于二分类或多分类问题。然而&#xff0c;在异常点检测的场景中&#xff0c;我们通常会将数据视为一个类别&#xff08;即正常数据点&#xff09;&#xff0c;并尝试找到那些与正常数据点显著不同的点&#xff08;即异常点&#xff…

OS考研chapter3内存管理

目录 一、基础知识点补充 1.内存、内存地址概念与联系 2.按byte编址 vs 按字编码 二、进程运行的基本原理 1.指令的工作原理 2.逻辑地址 vs 物理地址 3.从写程序到程序运行 &#xff08;1&#xff09;编辑源代码 &#xff08;2&#xff09;编译 &#xff08;3&#xf…

深入浅出学习Pytorch—Pytorch简介与2024年最新安装(GPU)

深入浅出学习Pytorch—Pytorch简介 学习原因&#xff1a;Pytorch日益增长的发展速度与深度学习时代的迫切需要 Pytorch模型训练 pytorch实现模型训练包括以下的几个方面&#xff08;学习路线&#xff09; 数据&#xff1a;数据预处理与数据增强模型&#xff1a;如何构建模型模…

Java Jackson-jr 库是干什么用的

Jackson-jr 是一个轻量级的Java JSON 处理库。这个库被设计用来替代 Jackson 的复杂性。对比 Jackson 的复杂 API&#xff0c;Jackson-jr 的启动速度更快&#xff0c;包大小更小。 虽然Jackson databind&#xff08;如ObjectMapper&#xff09;是通用数据绑定的良好选择&#…

Linux变量的认识及环境变量配置详解

文章目录 1、变量的划分2、局部变量3、全局变量4、环境变量4.1、概述4.2、配置临时环境变量4.3、配置永久环境变量4.3.1、用户级配置文件1&#xff09;配置方法一&#xff1a;~/.bashrc文件2&#xff09;配置方法二&#xff1a;~/.profile文件3&#xff09;配置方法三&#xff…

git学习指南

文章目录 一.版本控制1.认识版本控制2.版本控制功能3.集中式版本控制4.分布式版本控制 二.Git的环境安装搭建1.Git的安装2.Git配置分类3.Git配置选项 三.Git初始化本地仓库1. git init/git clone-获取Git仓库2. 本地仓库文件的划分3. git status-检测文件的状态4. git add-文件…

什么?300TB SSD要来了?

SK海力士在韩国首尔的一场新闻发布会上宣布&#xff0c;其正在研发一款前所未有的300TB容量的固态硬盘&#xff08;SSD&#xff09;。这款硬盘的预告是该公司一系列旨在推动数据中心和设备端AI能力发展的产品与技术组合的一部分。SK海力士引用市场研究预测&#xff0c;全球在AI…

前端-React项目初始化

大家好我是苏麟 , 今天聊聊前端依赖 Ant Desgin Pro 快速初始化项目 . Ant Desgin Pro 官网 : 开始使用 - Ant Design Pro 初始化项目 找到文档->快速上手 脚手架命令 : # 使用 npm npm i ant-design/pro-cli -g创建项目命令 : pro create 项目名称 选择简单还是全量 : …

课时114:sed命令_进阶实践_高阶用法1

2.2.3 高阶用法1 学习目标 这一节&#xff0c;我们从 基础知识、缓存实践、小结 三个方面来学习。 基础知识 简介 对于sed命令来说&#xff0c;除了我们经常使用的模式空间之外&#xff0c;它还支持一个叫暂存空间(Hold Space)的模式,所谓的暂存空间&#xff0c;也就是说&a…

【软件工程】详细设计

目录 前言详细设计算法设计工具——判定表 前言 软件工程生命周期分为八个阶段&#xff1a; 问题定义—>可行性研究—>需求分析 —>概要设计—>详细设计—>编码与单元测试 —>综合测试—>软件维护 这节我们讲的是软件开发流程中的一个阶段&#xff0c;需求…

如何批量复制多个文件到多个目录中(提取匹配法)

首先&#xff0c;需要用到的这个工具&#xff1a; 度娘网盘 提取码&#xff1a;qwu2 蓝奏云 提取码&#xff1a;2r1z 具体操作 1、情景再现 我这里创建了3个数字命名的文件夹和一些带有数字命名的图片文件。 &#xff08;这里仅做演示作用&#xff0c;实际操作的数量肯定巨…

webpack与vite

webpack 使用步骤&#xff1a; 初始化项目 pnpm init -y安装依赖webpack、webpack-cli在项目中创建src目录&#xff0c;然后编写代码&#xff08;index.js&#xff09;执行pnpm weboack来对代码进行打包&#xff08;打包后观察dist文件夹&#xff09; 配置古文件&#xff08;w…

快速构建vscode pytest 开发测试环境

如果不想用 heavy 的pycharm vscode 也是1个很好的选择 安装python SDK pacman -S python [gatemanmanjaro-x13 tmp]$ pacman -Q python python 3.11.8-1安装Vscode 很多中方法 yay -S visual-studio-code-bin [gatemanmanjaro-x13 tmp]$ pacman -Q | grep -i visual visua…

HTML_CSS学习:列表相关属性

一、列表相关属性 相关代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>列表相关属性</title><style>ul{/*列表符号*//*list-style-type: decimal;*//*list-style-type…

使用OpenCV绘制两幅图验证DSC和IoU以及BCELoss的计算程序

1.创作灵感 很多小伙伴在玩深度学习模型的时候,需要计算Groudtruth和predict图的dsc、IOU以及BCELoss。这两个关键的指标的程序有很多种写法,今天使用OpenCV绘制两张已知分布的图像,计算其dsc、IOU以及BCELoss。 2、图像如图所示 在一个100100的区域内,红色框范围为预测…

在家连学校的服务器

在家连接学校的服务器。 Step1: 首先下载一个vscode的插件 Visual Studio Code - Code Editing. Redefined 我的服务区是ubuntu20.04&#xff0c;x64的&#xff0c;所以下载这个。 Step2: 下载到本地之后&#xff0c;想办法将这个文件拷贝到你的服务器上。 Step3: 解压该包…

基于Spring Boot的音乐网站与分享平台设计与实现

基于Spring Boot的音乐网站与分享平台设计与实现 开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/idea 系统部分展示 系统功能界面图&#xff0c;在系统首页可以查看首…