[mmucache]-ARMV8-aarch64的虚拟内存(mmutlbcache)介绍-概念扫盲

news2024/9/28 1:17:33

在这里插入图片描述
🔥博客主页 小羊失眠啦.
🎥系列专栏《C语言》 《数据结构》 《C++》 《Linux》 《Cpolar》
❤️感谢大家点赞👍收藏⭐评论✍️


在这里插入图片描述

思考:
1、cache的entry里都是有什么?
2、TLB的entry里都是有什么?
3、MMU操作的页表中的entry中都是有什么? L1和L3表中的entry中分别都是有什么?
本文已有答案,学完之后,你能否知道,看造化了,哈哈….
说明:
MMU/TLB/Cache等知识太过于零碎,各个模块直接又紧密相关,所以在介绍时会串着介绍,本文旨在介绍MMU的工作原理,学习cache请参考<ARM cache的学习笔记-一篇就够了)>

以下来自笨叔叔公众号中的提问:
1、cache的内部组织架构是怎么样的?能否画出一个cache的layout图?什么是set,way?
2、直接映射,全关联和组相联之间有什么区别?优缺点是啥?
3、重名问题是怎么发生的?
4、同名问题是怎么发生的?
5、VIPT会不会发生重名问题?
6、什么是inner shareability 和outer shareability?怎么区分?
7、什么是PoU?什么是PoC?
8、什么是cache一致性?业界解决cache一致性都有哪些方法?
9、MESI状态转换图,我看不懂。
10、什么cache伪共享?怎么发生的,如何避免?
11、DMA和cache为啥会有cache一致性问题?
12、网卡通过DMA收数据和发数据,应该怎么操作cache?
13、对于self-modifying code,怎么保证data cache和指令cache的一致性问题?

文章目录

  • 一、Memory attribute
    • 二、cache的一些基本概念
  • 三、Cache内存访问的模型:
  • 四、MMU的介绍
  • 五、VMSA 相关术语:
  • 六、address translation system (AT)
    • 6.1 地址翻译的过程
    • 6.2 和mmu相关的System registers
    • 6.3 Enable mmu and endianness的相关寄存器
    • 6.4 Address size configuration
    • 6.5 granule sizes
    • 6.6 granule size对地址翻译的影响
  • 6.7 disable mmu
  • 七、Translation table
    • 7.1 TTBR0/TTBR1
    • 7.2 页表的entry中包含哪些信息
    • 7.3 granule sizes
    • 7.4 Cache configuration
  • 八、ARM mmu三级页表查询的过程
  • 九、Translation Lookaside Buffer (TLB)
    • 9.1 TLB entry里有什么?
    • 9.2 contiguous block entries
    • 9.3 TLB abort
    • 9.4 TLB一致性
  • 十、VMSAv8-64 translation table format descriptors

本文转自 周贺贺,baron,代码改变世界ctw,Arm精选, 资深安全架构专家,11年手机安全/SOC底层安全开发经验。擅长trustzone/tee安全产品的设计和开发。

一、Memory attribute

armv8定义了device memory和normal memory两种内存,其中device memory固定的就是Outer-Shareable和Non-cacheable,而normal memory有多种属性可选。
说明一下:在B2.7.2章节中有这么一句话“Data accesses to memory locations are coherent for all observers in the system, and correspondingly are treated as being Outer Shareable”, treated as被看作是(但不是),所以在一些的文章中就认为device memory是没有shareable属性的。其实也能够理解,一段memory设置成了non-cacheable,然后再去讨论该memory的shareable属性,好像也没有意义。 不管怎么样,我们还是按照下方表格的来理解吧,device memory固定为Outer-Shareable和Non-cacheable

在这里插入图片描述

对于device memory,又分下面三种特性:
➨Gathering和non Gathering(G or nG):表示对多个memory的访问是否可以合并,如果是nG,表示处理器必须严格按照代码中内存访问来进行,不能把两次访问合并成一次。例如:代码中有2次对同样的一个地址的读访问,那么处理器必须严格进行两次read transaction
➨Reordering(R or nR):表示是否允许处理器对内存访问指令进行重排。nR表示必须严格执行program order
➨Early Write Acknowledgement(E or nE):PE访问memory是有问有答的(更专业的术语叫做transaction),对于write而言,PE需要write ack操作以便确定完成一个write transaction。为了加快写的速度,系统的中间环节可能会设定一些write buffer。nE表示写操作的ack必须来自最终的目的地而不是中间的write buffer

针对上面的三种特性,给出下面四种配置

  • Device-nGnRnE : 处理器必须严格按照代码中内存访问来进行、必须严格执行program order(无需重排序)、写操作的ack必须来自最终的目的地
  • Device-nGnRE : 处理器必须严格按照代码中内存访问来进行、必须严格执行program order(无需重排序)、写操作的ack可以来自中间的write buffer
  • Device-nGRE : 处理器必须严格按照代码中内存访问来进行、内存访问指令可以进行重排、写操作的ack可以来自中间的write buffer
  • Device-GRE : 处理器对多个memory的访问是否可以合并、内存访问指令可以进行重排、写操作的ack可以来自中间的write buffer
部分属性的含义
Shareable内存是共享的
non-Shareable内存不共享,一般只可被单个PE访问
cacheable内存会被缓存
non-cacheable内存不会被缓存

PoU/PoC/Inner/Outer的定义
简而言之,PoU/PoC定义了指令和命令的所能抵达的缓存或内存,在到达了指定地点后,Inner/Outer Shareable定义了它们被广播的范围。
例如:在某个A15上执行Clean清指令缓存,范围指定PoU。显然,所有四个A15的一级指令缓存都会被清掉。那么其他的各个Master是不是受影响?那就要用到Inner/Outer/Non Shareable

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

有了上面的这些定义,那么我们再来看inner Shareable和outer Shareable

Shareable
inner Shareable内存在inner范围内是共享的
outer Shareable内存在outer范围内是共享的

读分配(read allocation)
当CPU读数据时,发生cache缺失,这种情况下都会分配一个cache line缓存从主存读取的数据。默认情况下,cache都支持读分配。

写分配(write allocation)
当CPU写数据发生cache缺失时,才会考虑写分配策略。当我们不支持写分配的情况下,写指令只会更新主存数据,然后就结束了。当支持写分配的时候,我们首先从主存中加载数据到cache line中(相当于先做个读分配动作),然后会更新cache line中的数据。

写直通(write through)
当CPU执行store指令并在cache命中时,我们更新cache中的数据并且更新主存中的数据。cache和主存的数据始终保持一致。
在这里插入图片描述

写回(write back)
当CPU执行store指令并在cache命中时,我们只更新cache中的数据。并且每个cache line中会有一个bit位记录数据是否被修改过,称之为dirty bit(翻翻前面的图片,cache line旁边有一个D就是dirty bit)。我们会将dirty bit置位。主存中的数据只会在cache line被替换或者显示的clean操作时更新。因此,主存中的数据可能是未修改的数据,而修改的数据躺在cache中。cache和主存的数据可能不一致。

在这里插入图片描述

➨ 在ARMV8定义这些属性的寄存器和linux kernel或optee软件代码中使用的示例,请点击此处

二、cache的一些基本概念

cache是一个高速的内存块,它包含了很多entries,每一个entrie中都包含: memory地址信息(如tag)、associated data

cache的设计考虑了两大原则:
空间域(spatial locality): 访问了一个位置后,可能还会访问相邻区域, 如顺序执行的指令、访问一个结构体数据
时间域(Temporal locality):内存区域的访问很可能在短时间内重复,如软件中执行了一个循环操作.

为了减少cache读写的次数,将多个数据放到了同一个tag下,这就是我们所说的cache line
访问缓存中已经存在的信息叫做cache hit,访问缓存中不存在的数据叫做cache miss

cache引入的潜在问题:
内存的访问不一定同编程者预期的一样;
一个数据可以存在多个物理位置处

三、Cache内存访问的模型:

在这里插入图片描述

Memory coherency的术语定义:
Point of Unification (PoU), Point of Coherency (PoC), Point of Persistence (PoP), and Point of Deep Persistence (PoDP).

四、MMU的介绍

在ARMV8-aarch64体系下,ARM Core访问内存的硬件结构图如下所示:

在这里插入图片描述

其中,MMU由TLB和Table Walk Unit组成的.

TLB:Translation Lookaside Buffer (TLB),对应着TLB指令
Table Walk Unit,也叫地址翻译,address translation system,对应着AT指令

五、VMSA 相关术语:

➨ VMSA - Virtual Memory System Architecture
➨VMSAv8
➨VMSAv8-32
➨VMSAv8-64

➨Virtual address (VA)
➨Intermediate physical address (IPA)
➨Physical address (PA)

Translation stage can support only a single VA range
➨48-bit VA, 0x0000000000000000 to 0x0000FFFFFFFFFFFF
➨ARMv8.2-LVA : 64KB granule :52-bit VA,0x0000000000000000 to 0x000FFFFFFFFFFFFF

Translation stage can support two VA ranges
➨48-bit VA: 0x0000000000000000 - 0x0000FFFFFFFFFFFF , 0xFFFF000000000000 to 0xFFFFFFFFFFFFFFFF
➨52-bit VA: 0x0000000000000000 - 0x000FFFFFFFFFFFFF , 0xFFF0000000000000 to 0xFFFFFFFFFFFFFFFF

Address tagging / Memory Tagging Extension / Pointer authentication

六、address translation system (AT)

6.1 地址翻译的过程

MMU的地址翻译工作是一种自动行为,当填好页表、配置好系统寄存器之后,cpu发起的虚拟地址读写操作,将会经过MMU自动转换成物理地址,然后发送到AXI总线上完成真正的内存或device的读写操作. 如下列举了ARM在不同exception level中的地址翻译的模型.

在这里插入图片描述

在一般的情况下,我们是不会启用stage2的,除非enable了EL2、实现了hypervisor,那么这时候才会开启stage2,如下图所示:

在这里插入图片描述

6.2 和mmu相关的System registers

在这里插入图片描述

在armv8-aarch64体系下,TCR(Translation Control Register)寄存器有

  • TCR_EL1
  • TCR_EL2
  • TCR_EL3
  • VTCR_EL2

它们的含义:地址翻译的控制寄存器

  • TCR_EL1, Translation Control Register (EL1)
    The control register for stage 1 of the EL1&0 translation regime.

  • TCR_EL3, Translation Control Register (EL3)
    The control register for stage 1 of the EL3 translation regime

  • TCR_EL2, Translation Control Register (EL2)
    The control register for stage 1 of the EL2, or EL2&0, translation regime

  • VTCR_EL2, Virtualization Translation Control Register
    The control register for stage 2 of the EL1&0 translation regime

对应的bit map为

在这里插入图片描述

6.3 Enable mmu and endianness的相关寄存器

在这里插入图片描述

在ARMV8-aarch64架构下有三个sctlr寄存器

  • SCTLR_EL1
  • SCTLR_EL2
  • SCTLR_EL3
    以SCTLR_EL3,该系统寄存器的SCTLR_EL3.EE(BIT[25])定义了MMU访问页表的方式:小端方式读、还是大端方式读

在这里插入图片描述

6.4 Address size configuration

  • Physical address size – 告诉cpu,当前系统的物理地址是多少位
  • Output address size – 告诉mmu,你需要给我输出多少位的物理地址
  • Input address size – 告诉mmu,我输入的是多数为的虚拟地址
  • Supported IPA size – stage2页表转换的部分size,暂不介绍

. Physical address size

在这里插入图片描述

b. output address size

在这里插入图片描述

c . Input address size

  • TCR_ELx.T0SZ定义使用TTBR0_ELx时,VA地址的size
  • TCR_ELx.T1SZ定义使用TTBR1_ELx时,VA地址的size

在这里插入图片描述

注意最大的size为:2^(64-x),x为TCR_ELx.T0SZ或TCR_ELx.T1SZ
d. Supported IPA size
由VTCR_EL2.SL0 and VSTCR_EL2.SL0寄存器决定

6.5 granule sizes

a. state 1 granule sizes

在这里插入图片描述

b. state 2 granule sizes

在这里插入图片描述

6.6 granule size对地址翻译的影响

granule size的配置不同,将会影响到页表的建立,不同的granule size的页面有着不同的页表结构,例如下表所示的:

在这里插入图片描述

6.7 disable mmu

disable mmu之后,the stage 1 translation,For the EL1&0:
For Normal memory, Non-shareable, Inner Write-Back Read-Allocate Write-Allocate, Outer Write-Back Read-Allocate Write-Allocate memory attributes

七、Translation table

7.1 TTBR0/TTBR1

ARM文档说:因为应用程序切换时要切换页表,页表经常改变,而kernel切换时不需要切换页表,页表几乎不改。所以ARM就提供了 a number of features,也就是TTBR0和TTBR1两个页表基地址. TTBR0用于0x00000000_00000000 - 0x0000FFFF_FFFFFFFF虚拟地址空间的翻译,TTBR1用于0xFFFF0000_00000000 - 0xFFFFFFFF_FFFFFFFF虚拟地址空间的翻译

EL2/EL3只有TTBR0,没有TTBR1,所以EL2/EL3的虚拟地址空间是:0x0000FFFF_FFFFFFFF

7.2 页表的entry中包含哪些信息

MMU除了完成地址的翻译,还控制的访问权限、memory ordering、cache policies.

如图所示,列出了三种类型的entry信息:

在这里插入图片描述

bits[1:0]表示该输出是block address,还是next level table address,还是invalid entry

7.3 granule sizes

有三种granule sizes的页表:4kb、16kb、64kb

在这里插入图片描述

7.4 Cache configuration

MMU使用translation tables 和 translation registers控制着cache policy、memory attributes、access permissions、va到pa的转换

八、ARM mmu三级页表查询的过程

在这里插入图片描述

  • (1)、在开启MMU后,cpu发起的读写地址是一个64bit的虚拟地址,
  • (2)、该虚拟地址的高16bit要么是全0,要么是全1. 如果是全0,则选择TTBR0_ELx做为L1页表的基地址; 如果是全1,则选择TTBR1_ELx做为L1页表的基地址;
  • (3)、TTBRx_ELn做为L1页表,它指向L2页表,在根据bit[41:29]的index,查询到L3页表的基地址
  • (4)(5)、有了L3页表的基地址之后,在根据bit[28:16]的index,查询到页面的地址
  • (6)、最后再根据bit[15:0]查找到最终的物理地址

九、Translation Lookaside Buffer (TLB)

9.1 TLB entry里有什么?

TLB中不仅仅包含物理地址和虚拟地址,它还包含一些属性,例如:memory type、cache policies、access permissions、ASID、VMID
注:ASID - Address Space ID, VMID - Virtual Machine ID

9.2 contiguous block entries

TLB拥有固定数目的entries,所以你可以通过减少外部内存地址转换的次数来提升TLB hit率.
在ARMV8 architecture中有一个TLB中的feature叫contiguous block entries,它表示一个entry可以对应多个blocks. 一个entry找到多个blocks,再通过index来查找具体是哪个block。 页表的block entries中,也有一个contiguous bit。这个bit为1,则表示开启了TLB的contiguous block entries feature。
contiguous block entries feature要求alignment,例如:
• 16 × 4KB adjacent blocks giving a 64KB entry with 4KB granule. 缓存64kb blocks,只需16 enties
• 32 × 32MB adjacent blocks giving a 1GB entry for L2 descriptors, 128 × 16KB giving a 2MB entry for L3 descriptors when using a 16KB granule.
• 32 × 64Kb adjacent blocks giving a 2MB entry with a 64KB granule.

如果支持了contiguous bit,那么:
TLB查询后的PA = TLB entry中的PA + index。

9.3 TLB abort

如果开启了contiguous bit,而要转换的table entries确不是连续的,或者entries的output在地址范围之外或没有对齐,那么将会产生TLB abort

9.4 TLB一致性

如果os修改了页表(entries),那么os需要告诉TLB,invalid这些TLB entries,这是需要软件来做的. 指令如下:

TLBI <type><level>{IS} {, <Xt>}

十、VMSAv8-64 translation table format descriptors

这里的table format descriptors,其实就是本文开头“思考”中提到的entry,在页表中的entry, 要么是invalid,要么是table entry,要么是block entry

  • An invalid or fault entry.
  • A table entry, that points to the next-level translation table.
  • A block entry, that defines the memory properties for the access.
  • A reserved format

如果是table entry,其attribute描述如下:

在这里插入图片描述

如果是block entry,其attribute描述如下:

在这里插入图片描述

如果是stage2的entry,无论是table entry还是block entry,其attribute描述如下:

在这里插入图片描述

其实用如下的一张图来描述更清晰:

在这里插入图片描述

这里的bit[1:0]用于定义entry的类型(invalid? block ? table? reserved)
bit[4:2]指向 MAIR_ELn寄存器中的其中的一个字节,用于定义内存(main memory和device memory)的类型

MAIR_ELn寄存器拆分成8个bytes,每个byte定义一种内存类型
(MAIR_ELn, Memory Attribute Indirection Register (ELn))

在这里插入图片描述

每一个byte(attrn)的含义如下:

在这里插入图片描述

各个bit位的具体含义

在这里插入图片描述

例如optee中的内存属性配置如下:

#define ATTR_DEVICE_INDEX		0x0
#define ATTR_IWBWA_OWBWA_NTR_INDEX	0x1
#define ATTR_INDEX_MASK			0x7

#define ATTR_DEVICE			(0x4)
#define ATTR_IWBWA_OWBWA_NTR		(0xff)

mair  = MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);
mair |= MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX);
write_mair_el1(mair);

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1506962.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

保持长期高效的七个法则(一)7 Rules for Staying Productive Long-Term(1)

Easily the best habit I’ve ever started was to use a productivity system.The idea is simple:organizing all the stuff you need to do (and how you’re going to do it) prevents a lot of internal struggle to get things done. 无疑&#xff0c;我曾经建立过的最好…

简单了解TCP/IP四层模型

什么是计算机网络&#xff1f; 计算机网络我们可以理解为一个巨大的城市地图&#xff0c;我们想从A地前往B地&#xff0c;其中要走的路、要避开的问题都交给计算机网络解决&#xff0c;直到我们可以正常的到达目的地&#xff0c;那么我们会把其中的过程抽象成一个网络模型&…

分布式执行引擎ray入门--(3)Ray Train

Ray Train中包含4个部分 Training function: 包含训练模型逻辑的函数 Worker: 用来跑训练的 Scaling configuration: 配置 Trainer: 协调以上三个部分 Ray TrainPyTorch 这一块比较建议直接去官网看diff&#xff0c;官网色块标注的比较清晰&#xff0c;非常直观。 impor…

APP2:android studio如何使用lombok

一、前言 不知道从哪个版本开始&#xff0c;android studio便无法在plugins中下载lombok了&#xff0c;有人说是内置了&#xff0c;好像有这么回事儿。我主要面临如下两个问题&#xff1a; 使用内置lombok&#xff0c;可以自动生成setter、setter、toString等。但是&#xff0…

政安晨:【深度学习处理实践】(五)—— 初识RNN-循环神经网络

RNN&#xff08;循环神经网络&#xff09;是一种在深度学习中常用的神经网络结构&#xff0c;用于处理序列数据。与传统的前馈神经网络不同&#xff0c;RNN通过引入循环连接在网络中保留了历史信息。 RNN中的每个神经元都有一个隐藏状态&#xff0c;它会根据当前输入和前一个时…

【QT+QGIS跨平台编译】之七十:【QGIS_Analysis跨平台编译】—【qgsrastercalcparser.cpp生成】

文章目录 一、Bison二、生成来源三、构建过程一、Bison GNU Bison 是一个通用的解析器生成器,它可以将注释的无上下文语法转换为使用 LALR (1) 解析表的确定性 LR 或广义 LR (GLR) 解析器。Bison 还可以生成 IELR (1) 或规范 LR (1) 解析表。一旦您熟练使用 Bison,您可以使用…

free pascal 调用 C#程序读 Freeplane.mm文件,生成测试用例.csv文件

C# 请参阅&#xff1a;C# 用 System.Xml 读 Freeplane.mm文件&#xff0c;生成测试用例.csv文件 Freeplane 是一款基于 Java 的开源软件&#xff0c;继承 Freemind 的思维导图工具软件&#xff0c;它扩展了知识管理功能&#xff0c;在 Freemind 上增加了一些额外的功能&#x…

构建LVS集群

一、集群的基本理论&#xff08;一&#xff09;什么是集群 人群或事物聚集&#xff1a;在日常用语中&#xff0c;群集指的是一大群人或事物密集地聚在一起。例如&#xff0c;“人们群集在广场上”&#xff0c;这里的“群集”是指大量人群聚集的现象。 计算机技术中的集群&…

吴恩达机器学习-可选实验室:逻辑回归(Logistic Regression))

在这个不评分的实验中&#xff0c;你会探索sigmoid函数(也称为逻辑函数)探索逻辑回归;哪个用到了sigmoid函数 import numpy as np %matplotlib widget import matplotlib.pyplot as plt from plt_one_addpt_onclick import plt_one_addpt_onclick from lab_utils_common impor…

批量提取PDF指定区域内容到 Excel 以及根据PDF里面第一页的标题来批量重命名-附思路和代码实现

首先说明下&#xff0c;PDF需要是电子版本的&#xff0c;不能是图片或者无法选中的那种。 需求1&#xff1a;假如我有一批数量比较多的同样格式的PDF电子文档&#xff0c;需要把特定多个区域的数字或者文字提取出来 需求2&#xff1a;我有一批PDF文档&#xff0c;但是文件的名…

【CSP试题回顾】202006-1-线性分类器

CSP-202006-1-线性分类器 解题思路 线性分类问题&#xff0c;即根据给定的数据点和分类界限&#xff0c;判断是否存在一条线能够将属于不同类别的点完全分开。具体来说&#xff0c;数据点被分为两类&#xff0c;标记为A和B&#xff0c;我们要找出是否存在一个线性决策边界&…

神经网络实战前言

应用广泛 从人脸识别到网约车&#xff0c;在生活中无处不在 未来可期 无人驾驶技术便利出行医疗健康改善民生 产业革命 第四次工业革命——人工智能 机器学习概念 机器学习不等价与人工智能20世纪50年代&#xff0c;人工智能是说机器模仿人类行为的能力 符号人工智能 …

官方安装配置要求服务器最低2核4G

官方安装配置要求服务器至少2核、4G。 如果服务器低于这个要求&#xff0c;就没有必要安装&#xff0c;因为用户体验超级差。 对于服务器CPU来说&#xff0c;建议2到4核就完全足够了&#xff0c;太多就浪费了&#xff0c;但是内存越大越好&#xff0c;最好是4G以上。 如果服务器…

XSS攻击场景分析

XSS攻击场景分析 在目前这个时间节点还是属于一个排位比较高的漏洞&#xff0c;在OWASP TOP10 2021中隶属于注入型漏洞&#xff0c;高居TOP3的排位&#xff0c;可见这个漏洞的普遍性。跨站脚本攻击的学习中我们主要需要明白的是跨站的含义&#xff0c;以及XSS的核心。XSS主流分…

CentOS 7安装MySQL及常见问题与解决方案(含JDBC示例与错误处理)

引言 MySQL是一个流行的开源关系型数据库管理系统&#xff0c;广泛应用于各种业务场景。在CentOS 7上安装MySQL后&#xff0c;我们通常需要使用JDBC&#xff08;Java Database Connectivity&#xff09;连接MySQL进行后端操作。 目录 引言 CentOS 7安装MySQL 使用JDBC连接My…

LLM Drift(漂移), Prompt Drift Cascading(级联)

原文地址&#xff1a;LLM Drift, Prompt Drift & Cascading 提示链接可以手动或自动执行&#xff1b;手动需要通过 GUI 链构建工具手工制作链。自治代理在执行时利用可用的工具动态创建链。这两种方法都容易受到级联、LLM 和即时漂移的影响。 2024 年 2 月 23 日 在讨论大型…

Java对接(BSC)币安链 | BNB与BEP20的开发实践(二)BNB转账、BEP20转账、链上交易监控

上一节我们主要是环境搭建&#xff0c;主要是为了能够快速得去开发&#xff0c;有些地方只是简单的介绍&#xff0c;比如ETH 、web3j等等这些。 这一节我们来用代码来实现BNB转账、BEP20转账、链上交易监控 话不多说&#xff0c;我们直接用代码实现吧 1. BNB转账 /*** BNB转…

Python判断语句+循环语句

一、Python判断语句 1.1 布尔类型和比较运算符 # 定义变量存储布尔类型的数据 bool_1 True bool_2 False print( f"bool_1变量的内容是&#xff1a;{ bool_1 }&#xff0c;类型为&#xff1a;{ type( bool_1 ) }" ) print( f"bool_2变量的内容是&#xff1a;{…

打卡--MySQL8.0 一(单机部署)

一路走来&#xff0c;所有遇到的人&#xff0c;帮助过我的、伤害过我的都是朋友&#xff0c;没有一个是敌人。如有侵权&#xff0c;请留言&#xff0c;我及时删除&#xff01; MySQL 8.0 简介 MySQL 8.0与5.7的区别主要体现在&#xff1a;1、性能提升&#xff1b;2、新的默认…

ELFK 分布式日志收集系统

ELFK的组成&#xff1a; Elasticsearch: 它是一个分布式的搜索和分析引擎&#xff0c;它可以用来存储和索引大量的日志数据&#xff0c;并提供强大的搜索和分析功能。 &#xff08;java语言开发&#xff0c;&#xff09;logstash: 是一个用于日志收集&#xff0c;处理和传输的…