遥感图像处理:最小噪声分离变换(Minimum Noise Fraction Rotation,MNF Rotation
- 1.PCA变换
- 2.MNF
- 3.PCA和MNF
1.PCA变换
在统计学中,主成分分析PCA是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用于减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。
- 第一步计算矩阵 X 的样本的协方差矩阵 S(此为不标准PCA,标准PCA计算相关系数矩阵C) :
- 第二步计算协方差矩阵S(或C)的特征向量 e1,e2,…,eN和特征值 , t = 1,2,…,N ;
- 第三步投影数据到特征向量张成的空间之中。利用公式 n e w B V i , p = ∑ k = 1 n e i B V i , k new BV_{i,p}=\sum^n_{k=1}e_iBV_{i,k} newBVi,p=∑k=1neiBVi,k,其中BV值是原样本中对应维度的值
参考:【CSDN】基于主成分变换(PCA)的图像融合
2.MNF
最小噪声分离变换(Minimum Noise Fraction Rotation,MNF Rotation)工具用于判定图像数据内在的维数(即波段数),分离数据中的噪声,减少随后处理中的计算需求量。MNF本质上是两次层叠的主成分变换。第一次变换(基于估计的噪声协方差矩阵)用于分离和重新调节数据中的噪声,这步操作使变换后的噪声数据只有最小的方差且没有波段间的相关。第二步是对噪声白化数据(Noise-whitened)的标准主成分变换。
参考:MNF最小噪声分离变换(转)
3.PCA和MNF
由此可知,MNF变换具有PCA变换的性质,是一种正交变换,变换后得到的向量中的各元素互不相关,第一分量集中了大量的信息,随着维数的增加,影像质量逐渐下降,按照信噪比从大到小排列,而不像PCA变换按照方差由大到小排列,从而克服了噪声对影像质量的影响。正因为变换过程中的噪声具有单位方差,且波段间不相关,所以它比PCA变换更加优越[4]。