链表和顺序表的优劣分析及其时间、空间复杂度分析

news2024/11/14 15:12:46

链表和顺序表的优劣分析及其时间、空间复杂度分析

  • 一、链表和顺序表的优劣分析
  • 二、算法复杂度
    • <font face = "楷体" size = 5 color = blue>//上面算法的执行次数大致为:F(N) = N^2+2*N+10;   N =10,F(10) = 100+20+10 = 130次   N =100,F(100) = 10000+200+10 = 10210次   N =1000,F(10) = 100000+2000+10 = 1002010次 实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。 </font> <font face = "楷体" size = 5 color = blue>//大O渐进表示法

一、链表和顺序表的优劣分析

1.顺序表的优劣分析
//优势:
//*下标可以随机访问:顺序表的底层是数据,可以下标随机访问!
//CPU高速缓存命中率高(这个还是很重要!)
可以看这篇文章,理解CPU缓存知识!
什么是缓存?
  缓存是一种在计算机系统中用于存储数据的硬件或软件组件,它的主要目的是提高数据访问的速度和效率。缓存通常位于CPU内部或主存储器和CPU之间,它能够快速地存储和检索经常访问的数据和指令。当CPU需要访问数据或指令时,它会首先检查缓存中是否已经存在相应的数据或指令,如果存在,则可以直接从缓存中读取,这样就避免了从主存储器中读取数据或指令的延迟。
  缓存的设计允许它牺牲数据的实时性,以空间换时间,从而减少数据库的IO操作,减轻服务器压力,减少网络延迟,加快页面打开速度。缓存可以分为不同的层次,如CPU缓存、操作系统文件缓存和浏览器缓存等。
  CPU缓存分为L1 Cache(一级缓存)和L2 Cache(二级缓存),它们位于CPU内部,用于存储CPU即将使用的指令和数据。操作系统文件缓存用于存储操作系统读取的文件数据,而浏览器缓存则用于存储用户访问的静态或动态页面内容,以便在用户再次访问时能够快速加载。
  总的来说,缓存是一种重要的性能优化技术,它通过将数据存储在更接近处理器或数据源的位置,提高了数据处理的效率和响应速度。

1
//大概意思是在CPU附近会有三级缓存(L1,L2,L3)
//L1缓存分为两种(指令缓存和数据缓存),L2和L3缓存不分指令和数据
//L1和L2缓存在每一个CPU核中,L3则是所有CPU核心共享的内存。
//L1、L2、L3的越离CPU近就越小,速度也越快,越离CPU远,速度也越慢。
//缓存是速度最快的存储数据的地方
//后面存储数据的地方就是存储器和磁盘
//下面看看各个存储硬件的存储速度
L1 的存取速度:4 个CPU时钟周期
L2 的存取速度:11个CPU时钟周期
L3 的存取速度:39个CPU时钟周期
RAM内存的存取速度:107 个CPU时钟周期

//缓存命中问题!
//我们需要要解一个术语 Cache Line。缓存基本上来说就是把后面的数据加载到离自己近的地方,对于CPU来说,它是不会一个字节一个字节的加载的,因为这非常没有效率,一般来说都是要一块一块的加载的,对于这样的一块一块的数据单位,术语叫“Cache Line”,一般来说,一个主流的CPU的Cache Line 是 64 Bytes(也有的CPU用32Bytes和128Bytes),64Bytes也就是16个32位的整型,这就是CPU从内存中捞数据上来的最小数据单位。
//也就是说CPU在取数据计算的时候至少是取一个缓存行(64Bytes)的大小,这样,顺序表的物理地址连续,加载到缓存中,CPU取到的都是顺序表中存的有效数据,而链表的物理空间不连续,大概率只能取到一个有效数据,其它供CPU计算的数据没用!所谓的缓存命中不高!
//缺点
//前面部分的插入,删除,需要挪动数据,效率低下
//扩容(效率损失,可能还存在一定的空间浪费)

---------------------------------------
2.链表(最优结构的比较)的优劣分析
//优势:
//任意位置的插入,删除效率都很高
//按需申请释放,不存在浪费
//劣势:
//不支持下标随机访问
//CPU高速缓存命中率低可以理解为 cache line 取数据问题

二、算法复杂度

//算法在编写成可执行程序后,运行时需要消耗时间资源和(内存)空间资源,衡量一个算法的好坏,要存运行时间的多少和空间消耗大小来衡量一个算法的好坏!!!
//时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

时间复杂度
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个
分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
 for (int j = 0; j < N ; ++ j)
 {
 ++count;
 }
}
 
for (int k = 0; k < 2 * N ; ++ k)
{
 ++count;
}
 
int M = 10;
while (M--)
{
 ++count;
}

//上面算法的执行次数大致为:F(N) = N^2+2*N+10;
  N =10,F(10) = 100+20+10 = 130次
  N =100,F(100) = 10000+200+10 = 10210次
  N =1000,F(10) = 100000+2000+10 = 1002010次
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

//大O渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。 推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。 使用大O的渐进表示法以后,Func1的时间复杂度为:
N= 10  F(N) = 100
N = 100  F(N) = 10000
N = 1000  F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界) 例如:在一个长度为N数组中搜索一个数据x 最好情况:1次找到 最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

//考虑最坏情况来写时间复杂度
//上面时间复杂度为:O(N^2)

// 计算Func2的时间复杂度?
void Func2(int N)
{
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 
 int M = 10;
 while (M--)
 {
 ++count;
 }
 
 printf("%d\n", count);
}

//时间复杂度:O(N)

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

//时间复杂度:O(M+N)

// 计算Func4的时间复杂度?
void Func4(int N)
{
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

//O(1) --常数次用O(1)表示

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 
 if (exchange == 0)
 break;
 }
}

//冒泡的时间复杂度怎么算?
//这个还是想一下,假设有N个元素,最坏排序多少趟能排好?
// N-1
// N-2
// N-3
// …
// 3
// 2
// 1
//总共执行了多少次?
// (N-1) * (1+N-1)/2 = (N-1) * N/2 = 1/2*(N^2-N);
// 则冒泡排序的时间复杂度:O(N^2)

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
 assert(a);
 
 int begin = 0;
 int end = n-1;
 // [begin, end]:begin和end是左闭右闭区间,因此有=号
 while (begin <= end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid-1;
 else
 return mid;
 }
 
 return -1;
}

//二分查找的时间复杂度为多少?
//怎么理解二分查找算法的时间复杂度?
//假设有一个长度为N的数组查找一个数,最坏情况是什么?
//最坏情况是:查找的数只剩一个,或没有,二分查找的实质是每次缩小一半区间来查找!
//查找N个数,则每查找一次,少一半的数
则:N/2/2/2…/2 = 1;区间缩小了多少次?也就是除了多少个2,就是查找了几次!
//设除了x个2
N/(2^x) = 1;
N = 2^x;
x = logN
//所以二分查找算法最坏情况下查找log以2为底N的对数!
//时间复杂度为:O(logN);
1

-----------------------------------------
计算下面递归阶乘的时间复杂度?

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
 if(0 == N)
 return 1;
 
 return Fac(N-1)*N;
}

//所谓的递归多次开辟函数栈桢的过程,那么看一次开辟的栈桢执行程序是多少次,总共N次的递归的时间复杂度!
1

long long F(size_t N)
{
	if (0 == N)
		return 1;
	for (int i = 0; i < N; i++)
	{
		//...
	}
	return F(N - 1) * N;
}

//计算上面算法的时间复杂度!
//上面函数栈桢开辟了N+1次,每一次是O(N),所以总共是O(N^2)


//总结一下递归算法计算时间复杂度,每次递归子函数消耗累加起来!

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
 if(N < 3){
 	return 1;
 }
 return Fib(N-1) + Fib(N-2);
}

1
1
1
// 2^0
// 2^1
// 2^2
// 2^3
// 2^(N-1)
//: F(n) =2^0 + 2^1 + 2^2 +…+ 2^(N-1)
//:2*F(n) =2^1 + 2^2 + 2^3 +…+ 2^N
//:F(n) = 2^N-1
//:所以斐波那契的时间复杂度:O(2^N)

什么是空间复杂度!
  空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
  空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数
空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

//空间复杂度,算的是因为算法的需要,额外开的空间!!!

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
 for (size_t end = n; end > 0; --end)
 {
 	int exchange = 0;
 	for (size_t i = 1; i < end; ++i)
 	{
 	if (a[i-1] > a[i])
 	{
 		Swap(&a[i-1], &a[i]);
 		exchange = 1;
 	}
 }
 
 if (exchange == 0){
 	break;
 }
}

//在上面的算法中额外开辟的空间变量有:end,i,exchange,说一点在这儿i虽然开辟了n次,但是这儿申请,释放的空间是同一块空间,所以没有额外开辟空间!!!
//所以此算法的空间复杂度是O(N);

-----------------------------------------

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
 if(N == 0)
 	return 1;
 
 return Fac(N-1)*N;
 }

在这里插入图片描述

//空间复杂度就是计算算法额外开辟的空间!
//此递归,总共递归了(N+1)次,每次是O(1),总共是O(N);

// 计算斐波那契递归Fib的空间复杂度?
long long Fib(size_t N)
{
 if(N < 3){
 	return 1;
 }
 return Fib(N-1) + Fib(N-2);

//斐波那契递归的空间复杂度怎么算?
//这个比较复杂一点,要理解一点函数栈桢的开辟才能做好!!!

1
//综上分析:虽然这个递归每一层很复杂,但是利用的空间只有一个子函数的空间,因此斐波那契的空间复杂度是O(N)


完结!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1468598.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LeetCode LCR 085.括号生成

正整数 n 代表生成括号的对数&#xff0c;请设计一个函数&#xff0c;用于能够生成所有可能的并且 有效的 括号组合。 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;[“((()))”,“(()())”,“(())()”,“()(())”,“()()()”] 示例 2&#xff1a; 输入&#x…

详解Megatron中的数据混合算法(BlendableDataset)

&#x1f9d1;‍&#x1f4bb; 本文主要讲解Megatron早期版本中的数据混合算法。 目录 1. 数据混合2. 源码解析3. 证明部分&讨论4. 进一步优化 1. 数据混合 在谈源码之前&#xff0c;我们有必要先了解一下Megatron中的数据混合思想。 给定 n n n 个数据集 D 1 , D 2 , …

【加密周报】中美非“出手”压制比特币?以太坊飙涨震醒沉睡8年巨鲸!“AI热潮”刺激相关代币集体拉涨!

回顾本周&#xff0c;中美非三国出现压制加密货币行动&#xff0c;比特币空头暂获胜利&#xff0c;币价最低触及50521美元。以太币表现跑赢比特币&#xff0c;牛市回归下震醒沉睡8年的ICO巨鲸。美国人工智能(AI)热潮下&#xff0c;刺激世界币(Worldcoin)突破历史新高&#xff0…

美团外卖流程解析:便捷、高效、安全的美食配送

美团外卖作为中国最大的外卖平台之一&#xff0c;提供了丰富多样的美食选择&#xff0c;并通过高效的配送服务将美食送到用户手中。本文将深入探讨美团外卖的流程&#xff0c;从下单到送达&#xff0c;揭秘背后的便捷、高效、安全的运营体系。 1. 下单与支付 美团外卖的下单过…

成功解决No module named ‘sklearn‘(ModuleNotFoundError)

成功解决No module named ‘sklearn’(ModuleNotFoundError) &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程 &#x1f448; 希望得到您…

【前端素材】推荐优质后台管理系统Qovex平台模板(附源码)

一、需求分析 1、定义 后台管理系统是一种用于管理和监控网站、应用程序或系统的在线工具。它通常是通过网页界面进行访问和操作&#xff0c;用于管理网站内容、用户权限、数据分析等。后台管理系统是网站或应用程序的控制中心&#xff0c;管理员可以通过后台系统进行各种管理…

MATLAB环境下使用滤波自适应算法进行主动噪声消除

滤波作为自适应滤波系统中信号处理等研究领域的重要组成模块&#xff0c;主要被应用于信道均衡、系统识别、声学回波抵消、生物医学、雷达、波束形成等模块。在自适应滤波系统中&#xff0c;当信息数据统计方面的相关先验知识是已知的情况下&#xff0c;滤波器才能处理相关的输…

vulnhub靶场之driftingblues-1

一.环境搭建 1.靶场描述 get flags difficulty: easy about vm: tested and exported from virtualbox. dhcp and nested vtx/amdv enabled. you can contact me by email (it should be on my profile) for troubleshooting or questions. 2.靶场下载 https://www.vulnhub.…

新版Java面试专题视频教程——虚拟机篇①

新版Java面试专题视频教程——虚拟机篇① 1 JVM组成1.1 JVM由那些部分组成&#xff0c;运行流程是什么&#xff1f;1.2 什么是程序计数器&#xff1f;1.3 你能给我详细的介绍Java堆吗?1.3.1 1.7和1.8 堆的区别1.3.2 元空间(MetaSpace)介绍 1.4 什么是虚拟机栈1.4.1 堆和栈的区…

二进制部署k8s集群之cni网络插件

目录 k8s的三种网络模式 pod内容器之间的通信 同一个node节点中pod之间通信 不同的node节点的pod之间通信 flannel网络插件 flannel的三种工作方式 VxLAN host-GW UDP Flannel udp 模式 Flannel VXLAN 模式 flannel插件的三大模式的总结 calico网络插件 k8s 组网…

Python urllib、requests、HTMLParser

HTTP协议 HTTP 协议&#xff1a;一般指HTTP(超文本传输)协议。 HTTP是为Web浏览器和Web服务器之间的通信而设计的&#xff0c;基于TCP/IP通信协议嘞传递数据。 HTTP消息结构 客户端请求消息 客户端发送一个HTTP请求到服务器的请求消息包括以下格式 请求行(request line)请求…

排列组合(附10道题目及解析)

一、认识C,P,A: A.排列 A(x,y)(x!)/[(x-y)!]x(x-1)...(x-y1) P.排列 P(x,y)A(x,y) C.组合 C(x,y)A(x,y)(y!)x(x-1)...(x-y1)/(y!)(x!){(y!)[(x-y)!]} 例&#xff1a;C(5,2)(54)(21)10 例&#xff1a;A(5,2)5420 例&#xff1a;P(5,2)5420 二、特殊情况 C…

Linux: yum查看、安装、删除软件包

Linux: yum安装删除软件包 yum查找软件包yum 安装软件yum 卸载软件 yum查找软件包 在Linux中提供一条yum list指令用于查看当前系统中已存在和可以安装的软件包&#xff0c;但由于软件包的数量过多&#xff0c;所以我们可以通过grep指令来过滤出我们需要查找的软件包。 yum l…

欧拉函数性质和快速幂算法及python实现

目录 欧拉函数 快速幂算法 快速模幂算法 欧拉函数 两个不同的正整数a,b&#xff0c;若gcd(a,b)1,则a和b互质&#xff0c;1与任何正整数都互质 欧拉函数的意义 φ(n) 表示小于或等于正整数n的所有正整数中与n互质的数的个数 如φ(32) 16&#xff0c;即小于32的数中有16个…

【大厂AI课学习笔记】【2.2机器学习开发任务实例】(8)模型训练

好吧&#xff0c;搞了半天&#xff0c;都是围绕数据在干活&#xff0c;这也就验证了&#xff0c;我们说的&#xff0c;数据准备等工作&#xff0c;要占到机器学习项目一半以上的工作量和时间。而且数据决定了模型的天花板&#xff0c;算法只是去达到上限。 我们今天来学习模型…

优秀实践| 运营商核心系统国产数据库迁移实践

作者介绍 陕西移动信息技术部 张云川 陕西移动信息技术部 王永强 新炬网络中北三部 张建 随着国家对自主可控战略的深入推进&#xff0c;笔者所在省份聚焦数据库国产化替换&#xff0c;全面加速数据库国产化替换进程。以核心系统带动周边系统&#xff0c;成功在能力运营中…

EasyRecovery易恢复16软件最新中文版本下载

一、主要功能与特点 EasyRecovery易恢复16是一款专业的数据恢复软件&#xff0c;其主要功能和特点包括&#xff1a; 全面的数据恢复&#xff1a;支持恢复因误删除、格式化、系统崩溃、病毒攻击等多种原因丢失的数据。深度扫描技术&#xff1a;对于严重损坏或格式化的存储设备…

【坑】Spring Boot整合MyBatis,一级缓存失效

一、Spring Boot整合MyBatis&#xff0c;一级缓存失效 1.1、概述 MyBatis一级缓存的作用域是同一个SqlSession&#xff0c;在同一个SqlSession中执行两次相同的查询&#xff0c;第一次执行完毕后&#xff0c;Mybatis会将查询到的数据缓存起来&#xff08;缓存到内存中&#xf…

Flutter Engine 编译

本地环境 Flutter 开发基本环境配置&#xff0c;SDK【】 MAC. M2芯片 git工具 python环境[MAC自带] xcode Chromium depot_tools depot_tools 是调试 Flutter 引擎的必备工具包&#xff0c;包含了 gclient、gn 和 ninja 等工具&#xff0c;这些在下面会用到&#xff01;…

洛谷P5738 歌唱比赛 题解

#题外话&#xff08;第37篇题解&#xff09;&#xff08;本题为普及-难度&#xff09; #先看题目 题目链接https://www.luogu.com.cn/problem/P5738 #思路&#xff08;好像和P5726-打分有点像&#xff0c;参考一下&#xff09; #代码 #include <bits/stdc.h> using na…