Python pandas库|任凭弱水三千,我只取一瓢饮(5)

news2024/11/17 4:30:54

上一篇链接:

Python pandas库|任凭弱水三千,我只取一瓢饮(4)_Hann Yang的博客-CSDN博客

S~W:  Function46~56

Types['Function'][45:]
['set_eng_float_format', 'show_versions', 'test', 'timedelta_range', 'to_datetime', 'to_numeric', 'to_pickle', 'to_timedelta', 'unique', 'value_counts', 'wide_to_long']

Function46

set_eng_float_format(accuracy: 'int' = 3, use_eng_prefix: 'bool' = False) -> 'None'

Help on function set_eng_float_format in module pandas.io.formats.format:

set_eng_float_format(accuracy: 'int' = 3, use_eng_prefix: 'bool' = False) -> 'None'
    Alter default behavior on how float is formatted in DataFrame.
    Format float in engineering format. By accuracy, we mean the number of
    decimal digits after the floating point.
    
    See also EngFormatter.

Function47

show_versions(as_json: 'str | bool' = False) -> 'None'

Help on function show_versions in module pandas.util._print_versions:

show_versions(as_json: 'str | bool' = False) -> 'None'
    Provide useful information, important for bug reports.
    
    It comprises info about hosting operation system, pandas version,
    and versions of other installed relative packages.
    
    Parameters
    ----------
    as_json : str or bool, default False
        * If False, outputs info in a human readable form to the console.
        * If str, it will be considered as a path to a file.
          Info will be written to that file in JSON format.
        * If True, outputs info in JSON format to the console.

Function48

test(extra_args=None)

Help on function test in module pandas.util._tester:

test(extra_args=None)

Function49

timedelta_range(start=None, end=None, periods: 'Optional[int]' = None, freq=None, name=None, closed=None) -> 'TimedeltaIndex'

Help on function timedelta_range in module pandas.core.indexes.timedeltas:

timedelta_range(start=None, end=None, periods: 'Optional[int]' = None, freq=None, name=None, closed=None) -> 'TimedeltaIndex'
    Return a fixed frequency TimedeltaIndex, with day as the default
    frequency.
    
    Parameters
    ----------
    start : str or timedelta-like, default None
        Left bound for generating timedeltas.
    end : str or timedelta-like, default None
        Right bound for generating timedeltas.
    periods : int, default None
        Number of periods to generate.
    freq : str or DateOffset, default 'D'
        Frequency strings can have multiples, e.g. '5H'.
    name : str, default None
        Name of the resulting TimedeltaIndex.
    closed : str, default None
        Make the interval closed with respect to the given frequency to
        the 'left', 'right', or both sides (None).
    
    Returns
    -------
    TimedeltaIndex
    
    Notes
    -----
    Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
    exactly three must be specified. If ``freq`` is omitted, the resulting
    ``TimedeltaIndex`` will have ``periods`` linearly spaced elements between
    ``start`` and ``end`` (closed on both sides).
    
    To learn more about the frequency strings, please see `this link
    <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
    
    Examples
    --------
    >>> pd.timedelta_range(start='1 day', periods=4)
    TimedeltaIndex(['1 days', '2 days', '3 days', '4 days'],
                   dtype='timedelta64[ns]', freq='D')
    
    The ``closed`` parameter specifies which endpoint is included.  The default
    behavior is to include both endpoints.
    
    >>> pd.timedelta_range(start='1 day', periods=4, closed='right')
    TimedeltaIndex(['2 days', '3 days', '4 days'],
                   dtype='timedelta64[ns]', freq='D')
    
    The ``freq`` parameter specifies the frequency of the TimedeltaIndex.
    Only fixed frequencies can be passed, non-fixed frequencies such as
    'M' (month end) will raise.
    
    >>> pd.timedelta_range(start='1 day', end='2 days', freq='6H')
    TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
                    '1 days 18:00:00', '2 days 00:00:00'],
                   dtype='timedelta64[ns]', freq='6H')
    
    Specify ``start``, ``end``, and ``periods``; the frequency is generated
    automatically (linearly spaced).
    
    >>> pd.timedelta_range(start='1 day', end='5 days', periods=4)
    TimedeltaIndex(['1 days 00:00:00', '2 days 08:00:00', '3 days 16:00:00',
                    '5 days 00:00:00'],
                   dtype='timedelta64[ns]', freq=None)

Function50

to_datetime(arg: 'DatetimeScalarOrArrayConvertible', errors: 'str' = 'raise', dayfirst: 'bool' = False, yearfirst: 'bool' = False, utc: 'bool | None' = None, format: 'str | None' = None, exact: 'bool' = True, unit: 'str | None' = None, infer_datetime_format: 'bool' = False, origin='unix', cache: 'bool' = True) -> 'DatetimeIndex | Series | DatetimeScalar | NaTType | None'

Help on function to_datetime in module pandas.core.tools.datetimes:

to_datetime(arg: 'DatetimeScalarOrArrayConvertible', errors: 'str' = 'raise', dayfirst: 'bool' = False, yearfirst: 'bool' = False, utc: 'bool | None' = None, format: 'str | None' = None, exact: 'bool' = True, unit: 'str | None' = None, infer_datetime_format: 'bool' = False, origin='unix', cache: 'bool' = True) -> 'DatetimeIndex | Series | DatetimeScalar | NaTType | None'
    Convert argument to datetime.
    
    Parameters
    ----------
    arg : int, float, str, datetime, list, tuple, 1-d array, Series, DataFrame/dict-like
        The object to convert to a datetime.
    errors : {'ignore', 'raise', 'coerce'}, default 'raise'
        - If 'raise', then invalid parsing will raise an exception.
        - If 'coerce', then invalid parsing will be set as NaT.
        - If 'ignore', then invalid parsing will return the input.
    dayfirst : bool, default False
        Specify a date parse order if `arg` is str or its list-likes.
        If True, parses dates with the day first, eg 10/11/12 is parsed as
        2012-11-10.
        Warning: dayfirst=True is not strict, but will prefer to parse
        with day first (this is a known bug, based on dateutil behavior).
    yearfirst : bool, default False
        Specify a date parse order if `arg` is str or its list-likes.
    
        - If True parses dates with the year first, eg 10/11/12 is parsed as
          2010-11-12.
        - If both dayfirst and yearfirst are True, yearfirst is preceded (same
          as dateutil).
    
        Warning: yearfirst=True is not strict, but will prefer to parse
        with year first (this is a known bug, based on dateutil behavior).
    utc : bool, default None
        Return UTC DatetimeIndex if True (converting any tz-aware
        datetime.datetime objects as well).
    format : str, default None
        The strftime to parse time, eg "%d/%m/%Y", note that "%f" will parse
        all the way up to nanoseconds.
        See strftime documentation for more information on choices:
        https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior.
    exact : bool, True by default
        Behaves as:
        - If True, require an exact format match.
        - If False, allow the format to match anywhere in the target string.
    
    unit : str, default 'ns'
        The unit of the arg (D,s,ms,us,ns) denote the unit, which is an
        integer or float number. This will be based off the origin.
        Example, with unit='ms' and origin='unix' (the default), this
        would calculate the number of milliseconds to the unix epoch start.
    infer_datetime_format : bool, default False
        If True and no `format` is given, attempt to infer the format of the
        datetime strings based on the first non-NaN element,
        and if it can be inferred, switch to a faster method of parsing them.
        In some cases this can increase the parsing speed by ~5-10x.
    origin : scalar, default 'unix'
        Define the reference date. The numeric values would be parsed as number
        of units (defined by `unit`) since this reference date.
    
        - If 'unix' (or POSIX) time; origin is set to 1970-01-01.
        - If 'julian', unit must be 'D', and origin is set to beginning of
          Julian Calendar. Julian day number 0 is assigned to the day starting
          at noon on January 1, 4713 BC.
        - If Timestamp convertible, origin is set to Timestamp identified by
          origin.
    cache : bool, default True
        If True, use a cache of unique, converted dates to apply the datetime
        conversion. May produce significant speed-up when parsing duplicate
        date strings, especially ones with timezone offsets. The cache is only
        used when there are at least 50 values. The presence of out-of-bounds
        values will render the cache unusable and may slow down parsing.
    
        .. versionchanged:: 0.25.0
            - changed default value from False to True.
    
    Returns
    -------
    datetime
        If parsing succeeded.
        Return type depends on input:
    
        - list-like: DatetimeIndex
        - Series: Series of datetime64 dtype
        - scalar: Timestamp
    
        In case when it is not possible to return designated types (e.g. when
        any element of input is before Timestamp.min or after Timestamp.max)
        return will have datetime.datetime type (or corresponding
        array/Series).
    
    See Also
    --------
    DataFrame.astype : Cast argument to a specified dtype.
    to_timedelta : Convert argument to timedelta.
    convert_dtypes : Convert dtypes.
    
    Examples
    --------
    Assembling a datetime from multiple columns of a DataFrame. The keys can be
    common abbreviations like ['year', 'month', 'day', 'minute', 'second',
    'ms', 'us', 'ns']) or plurals of the same
    
    >>> df = pd.DataFrame({'year': [2015, 2016],
    ...                    'month': [2, 3],
    ...                    'day': [4, 5]})
    >>> pd.to_datetime(df)
    0   2015-02-04
    1   2016-03-05
    dtype: datetime64[ns]
    
    If a date does not meet the `timestamp limitations
    <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
    #timeseries-timestamp-limits>`_, passing errors='ignore'
    will return the original input instead of raising any exception.
    
    Passing errors='coerce' will force an out-of-bounds date to NaT,
    in addition to forcing non-dates (or non-parseable dates) to NaT.
    
    >>> pd.to_datetime('13000101', format='%Y%m%d', errors='ignore')
    datetime.datetime(1300, 1, 1, 0, 0)
    >>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce')
    NaT
    
    Passing infer_datetime_format=True can often-times speedup a parsing
    if its not an ISO8601 format exactly, but in a regular format.
    
    >>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000'] * 1000)
    >>> s.head()
    0    3/11/2000
    1    3/12/2000
    2    3/13/2000
    3    3/11/2000
    4    3/12/2000
    dtype: object
    
    >>> %timeit pd.to_datetime(s, infer_datetime_format=True)  # doctest: +SKIP
    100 loops, best of 3: 10.4 ms per loop
    
    >>> %timeit pd.to_datetime(s, infer_datetime_format=False)  # doctest: +SKIP
    1 loop, best of 3: 471 ms per loop
    
    Using a unix epoch time
    
    >>> pd.to_datetime(1490195805, unit='s')
    Timestamp('2017-03-22 15:16:45')
    >>> pd.to_datetime(1490195805433502912, unit='ns')
    Timestamp('2017-03-22 15:16:45.433502912')
    
    .. warning:: For float arg, precision rounding might happen. To prevent
        unexpected behavior use a fixed-width exact type.
    
    Using a non-unix epoch origin
    
    >>> pd.to_datetime([1, 2, 3], unit='D',
    ...                origin=pd.Timestamp('1960-01-01'))
    DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'],
                  dtype='datetime64[ns]', freq=None)
    
    In case input is list-like and the elements of input are of mixed
    timezones, return will have object type Index if utc=False.
    
    >>> pd.to_datetime(['2018-10-26 12:00 -0530', '2018-10-26 12:00 -0500'])
    Index([2018-10-26 12:00:00-05:30, 2018-10-26 12:00:00-05:00], dtype='object')
    
    >>> pd.to_datetime(['2018-10-26 12:00 -0530', '2018-10-26 12:00 -0500'],
    ...                utc=True)
    DatetimeIndex(['2018-10-26 17:30:00+00:00', '2018-10-26 17:00:00+00:00'],
                  dtype='datetime64[ns, UTC]', freq=None)

Function51

to_numeric(arg, errors='raise', downcast=None)

Help on function to_numeric in module pandas.core.tools.numeric:

to_numeric(arg, errors='raise', downcast=None)
    Convert argument to a numeric type.
    
    The default return dtype is `float64` or `int64`
    depending on the data supplied. Use the `downcast` parameter
    to obtain other dtypes.
    
    Please note that precision loss may occur if really large numbers
    are passed in. Due to the internal limitations of `ndarray`, if
    numbers smaller than `-9223372036854775808` (np.iinfo(np.int64).min)
    or larger than `18446744073709551615` (np.iinfo(np.uint64).max) are
    passed in, it is very likely they will be converted to float so that
    they can stored in an `ndarray`. These warnings apply similarly to
    `Series` since it internally leverages `ndarray`.
    
    Parameters
    ----------
    arg : scalar, list, tuple, 1-d array, or Series
        Argument to be converted.
    errors : {'ignore', 'raise', 'coerce'}, default 'raise'
        - If 'raise', then invalid parsing will raise an exception.
        - If 'coerce', then invalid parsing will be set as NaN.
        - If 'ignore', then invalid parsing will return the input.
    downcast : {'integer', 'signed', 'unsigned', 'float'}, default None
        If not None, and if the data has been successfully cast to a
        numerical dtype (or if the data was numeric to begin with),
        downcast that resulting data to the smallest numerical dtype
        possible according to the following rules:
    
        - 'integer' or 'signed': smallest signed int dtype (min.: np.int8)
        - 'unsigned': smallest unsigned int dtype (min.: np.uint8)
        - 'float': smallest float dtype (min.: np.float32)
    
        As this behaviour is separate from the core conversion to
        numeric values, any errors raised during the downcasting
        will be surfaced regardless of the value of the 'errors' input.
    
        In addition, downcasting will only occur if the size
        of the resulting data's dtype is strictly larger than
        the dtype it is to be cast to, so if none of the dtypes
        checked satisfy that specification, no downcasting will be
        performed on the data.
    
    Returns
    -------
    ret
        Numeric if parsing succeeded.
        Return type depends on input.  Series if Series, otherwise ndarray.
    
    See Also
    --------
    DataFrame.astype : Cast argument to a specified dtype.
    to_datetime : Convert argument to datetime.
    to_timedelta : Convert argument to timedelta.
    numpy.ndarray.astype : Cast a numpy array to a specified type.
    DataFrame.convert_dtypes : Convert dtypes.
    
    Examples
    --------
    Take separate series and convert to numeric, coercing when told to
    
    >>> s = pd.Series(['1.0', '2', -3])
    >>> pd.to_numeric(s)
    0    1.0
    1    2.0
    2   -3.0
    dtype: float64
    >>> pd.to_numeric(s, downcast='float')
    0    1.0
    1    2.0
    2   -3.0
    dtype: float32
    >>> pd.to_numeric(s, downcast='signed')
    0    1
    1    2
    2   -3
    dtype: int8
    >>> s = pd.Series(['apple', '1.0', '2', -3])
    >>> pd.to_numeric(s, errors='ignore')
    0    apple
    1      1.0
    2        2
    3       -3
    dtype: object
    >>> pd.to_numeric(s, errors='coerce')
    0    NaN
    1    1.0
    2    2.0
    3   -3.0
    dtype: float64
    
    Downcasting of nullable integer and floating dtypes is supported:
    
    >>> s = pd.Series([1, 2, 3], dtype="Int64")
    >>> pd.to_numeric(s, downcast="integer")
    0    1
    1    2
    2    3
    dtype: Int8
    >>> s = pd.Series([1.0, 2.1, 3.0], dtype="Float64")
    >>> pd.to_numeric(s, downcast="float")
    0    1.0
    1    2.1
    2    3.0
    dtype: Float32

Function52

to_pickle(obj: Any, filepath_or_buffer: Union[ForwardRef('PathLike[str]'), str, IO[~AnyStr], io.RawIOBase, io.BufferedIOBase, io.TextIOBase, _io.TextIOWrapper, mmap.mmap], compression: Union[str, Dict[str, Any], NoneType] = 'infer', protocol: int = 5, storage_options: Union[Dict[str, Any], NoneType] = None)

Help on function to_pickle in module pandas.io.pickle:

to_pickle(obj: Any, filepath_or_buffer: Union[ForwardRef('PathLike[str]'), str, IO[~AnyStr], io.RawIOBase, io.BufferedIOBase, io.TextIOBase, _io.TextIOWrapper, mmap.mmap], compression: Union[str, Dict[str, Any], NoneType] = 'infer', protocol: int = 5, storage_options: Union[Dict[str, Any], NoneType] = None)
    Pickle (serialize) object to file.
    
    Parameters
    ----------
    obj : any object
        Any python object.
    filepath_or_buffer : str, path object or file-like object
        File path, URL, or buffer where the pickled object will be stored.
    
        .. versionchanged:: 1.0.0
           Accept URL. URL has to be of S3 or GCS.
    
    compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'
        If 'infer' and 'path_or_url' is path-like, then detect compression from
        the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no
        compression) If 'infer' and 'path_or_url' is not path-like, then use
        None (= no decompression).
    protocol : int
        Int which indicates which protocol should be used by the pickler,
        default HIGHEST_PROTOCOL (see [1], paragraph 12.1.2). The possible
        values for this parameter depend on the version of Python. For Python
        2.x, possible values are 0, 1, 2. For Python>=3.0, 3 is a valid value.
        For Python >= 3.4, 4 is a valid value. A negative value for the
        protocol parameter is equivalent to setting its value to
        HIGHEST_PROTOCOL.
    
    storage_options : dict, optional
        Extra options that make sense for a particular storage connection, e.g.
        host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
        are forwarded to ``urllib`` as header options. For other URLs (e.g.
        starting with "s3://", and "gcs://") the key-value pairs are forwarded to
        ``fsspec``. Please see ``fsspec`` and ``urllib`` for more details.
    
        .. versionadded:: 1.2.0
    
        .. [1] https://docs.python.org/3/library/pickle.html
    
    See Also
    --------
    read_pickle : Load pickled pandas object (or any object) from file.
    DataFrame.to_hdf : Write DataFrame to an HDF5 file.
    DataFrame.to_sql : Write DataFrame to a SQL database.
    DataFrame.to_parquet : Write a DataFrame to the binary parquet format.
    
    Examples
    --------
    >>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})
    >>> original_df
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    >>> pd.to_pickle(original_df, "./dummy.pkl")
    
    >>> unpickled_df = pd.read_pickle("./dummy.pkl")
    >>> unpickled_df
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    
    >>> import os
    >>> os.remove("./dummy.pkl")

Function53

to_timedelta(arg, unit=None, errors='raise')

Help on function to_timedelta in module pandas.core.tools.timedeltas:

to_timedelta(arg, unit=None, errors='raise')
    Convert argument to timedelta.
    
    Timedeltas are absolute differences in times, expressed in difference
    units (e.g. days, hours, minutes, seconds). This method converts
    an argument from a recognized timedelta format / value into
    a Timedelta type.
    
    Parameters
    ----------
    arg : str, timedelta, list-like or Series
        The data to be converted to timedelta.
    
        .. deprecated:: 1.2
            Strings with units 'M', 'Y' and 'y' do not represent
            unambiguous timedelta values and will be removed in a future version
    
    unit : str, optional
        Denotes the unit of the arg for numeric `arg`. Defaults to ``"ns"``.
    
        Possible values:
    
        * 'W'
        * 'D' / 'days' / 'day'
        * 'hours' / 'hour' / 'hr' / 'h'
        * 'm' / 'minute' / 'min' / 'minutes' / 'T'
        * 'S' / 'seconds' / 'sec' / 'second'
        * 'ms' / 'milliseconds' / 'millisecond' / 'milli' / 'millis' / 'L'
        * 'us' / 'microseconds' / 'microsecond' / 'micro' / 'micros' / 'U'
        * 'ns' / 'nanoseconds' / 'nano' / 'nanos' / 'nanosecond' / 'N'
    
        .. versionchanged:: 1.1.0
    
           Must not be specified when `arg` context strings and
           ``errors="raise"``.
    
    errors : {'ignore', 'raise', 'coerce'}, default 'raise'
        - If 'raise', then invalid parsing will raise an exception.
        - If 'coerce', then invalid parsing will be set as NaT.
        - If 'ignore', then invalid parsing will return the input.
    
    Returns
    -------
    timedelta64 or numpy.array of timedelta64
        Output type returned if parsing succeeded.
    
    See Also
    --------
    DataFrame.astype : Cast argument to a specified dtype.
    to_datetime : Convert argument to datetime.
    convert_dtypes : Convert dtypes.
    
    Notes
    -----
    If the precision is higher than nanoseconds, the precision of the duration is
    truncated to nanoseconds for string inputs.
    
    Examples
    --------
    Parsing a single string to a Timedelta:
    
    >>> pd.to_timedelta('1 days 06:05:01.00003')
    Timedelta('1 days 06:05:01.000030')
    >>> pd.to_timedelta('15.5us')
    Timedelta('0 days 00:00:00.000015500')
    
    Parsing a list or array of strings:
    
    >>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
    TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015500', NaT],
                   dtype='timedelta64[ns]', freq=None)
    
    Converting numbers by specifying the `unit` keyword argument:
    
    >>> pd.to_timedelta(np.arange(5), unit='s')
    TimedeltaIndex(['0 days 00:00:00', '0 days 00:00:01', '0 days 00:00:02',
                    '0 days 00:00:03', '0 days 00:00:04'],
                   dtype='timedelta64[ns]', freq=None)
    >>> pd.to_timedelta(np.arange(5), unit='d')
    TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],
                   dtype='timedelta64[ns]', freq=None)

Function54

unique(values)

Help on function unique in module pandas.core.algorithms:

unique(values)
    Hash table-based unique. Uniques are returned in order
    of appearance. This does NOT sort.
    
    Significantly faster than numpy.unique for long enough sequences.
    Includes NA values.
    
    Parameters
    ----------
    values : 1d array-like
    
    Returns
    -------
    numpy.ndarray or ExtensionArray
    
        The return can be:
    
        * Index : when the input is an Index
        * Categorical : when the input is a Categorical dtype
        * ndarray : when the input is a Series/ndarray
    
        Return numpy.ndarray or ExtensionArray.
    
    See Also
    --------
    Index.unique : Return unique values from an Index.
    Series.unique : Return unique values of Series object.
    
    Examples
    --------
    >>> pd.unique(pd.Series([2, 1, 3, 3]))
    array([2, 1, 3])
    
    >>> pd.unique(pd.Series([2] + [1] * 5))
    array([2, 1])
    
    >>> pd.unique(pd.Series([pd.Timestamp("20160101"), pd.Timestamp("20160101")]))
    array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]')
    
    >>> pd.unique(
    ...     pd.Series(
    ...         [
    ...             pd.Timestamp("20160101", tz="US/Eastern"),
    ...             pd.Timestamp("20160101", tz="US/Eastern"),
    ...         ]
    ...     )
    ... )
    <DatetimeArray>
    ['2016-01-01 00:00:00-05:00']
    Length: 1, dtype: datetime64[ns, US/Eastern]
    
    >>> pd.unique(
    ...     pd.Index(
    ...         [
    ...             pd.Timestamp("20160101", tz="US/Eastern"),
    ...             pd.Timestamp("20160101", tz="US/Eastern"),
    ...         ]
    ...     )
    ... )
    DatetimeIndex(['2016-01-01 00:00:00-05:00'],
            dtype='datetime64[ns, US/Eastern]',
            freq=None)
    
    >>> pd.unique(list("baabc"))
    array(['b', 'a', 'c'], dtype=object)
    
    An unordered Categorical will return categories in the
    order of appearance.
    
    >>> pd.unique(pd.Series(pd.Categorical(list("baabc"))))
    ['b', 'a', 'c']
    Categories (3, object): ['a', 'b', 'c']
    
    >>> pd.unique(pd.Series(pd.Categorical(list("baabc"), categories=list("abc"))))
    ['b', 'a', 'c']
    Categories (3, object): ['a', 'b', 'c']
    
    An ordered Categorical preserves the category ordering.
    
    >>> pd.unique(
    ...     pd.Series(
    ...         pd.Categorical(list("baabc"), categories=list("abc"), ordered=True)
    ...     )
    ... )
    ['b', 'a', 'c']
    Categories (3, object): ['a' < 'b' < 'c']
    
    An array of tuples
    
    >>> pd.unique([("a", "b"), ("b", "a"), ("a", "c"), ("b", "a")])
    array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object)

Function55

value_counts(values, sort: 'bool' = True, ascending: 'bool' = False, normalize: 'bool' = False, bins=None, dropna: 'bool' = True) -> 'Series'

Help on function value_counts in module pandas.core.algorithms:

value_counts(values, sort: 'bool' = True, ascending: 'bool' = False, normalize: 'bool' = False, bins=None, dropna: 'bool' = True) -> 'Series'
    Compute a histogram of the counts of non-null values.
    
    Parameters
    ----------
    values : ndarray (1-d)
    sort : bool, default True
        Sort by values
    ascending : bool, default False
        Sort in ascending order
    normalize: bool, default False
        If True then compute a relative histogram
    bins : integer, optional
        Rather than count values, group them into half-open bins,
        convenience for pd.cut, only works with numeric data
    dropna : bool, default True
        Don't include counts of NaN
    
    Returns
    -------
    Series

Function56

wide_to_long(df: 'DataFrame', stubnames, i, j, sep: 'str' = '', suffix: 'str' = '\\d+') -> 'DataFrame'

Help on function wide_to_long in module pandas.core.reshape.melt:

wide_to_long(df: 'DataFrame', stubnames, i, j, sep: 'str' = '', suffix: 'str' = '\\d+') -> 'DataFrame'
    Wide panel to long format. Less flexible but more user-friendly than melt.
    
    With stubnames ['A', 'B'], this function expects to find one or more
    group of columns with format
    A-suffix1, A-suffix2,..., B-suffix1, B-suffix2,...
    You specify what you want to call this suffix in the resulting long format
    with `j` (for example `j='year'`)
    
    Each row of these wide variables are assumed to be uniquely identified by
    `i` (can be a single column name or a list of column names)
    
    All remaining variables in the data frame are left intact.
    
    Parameters
    ----------
    df : DataFrame
        The wide-format DataFrame.
    stubnames : str or list-like
        The stub name(s). The wide format variables are assumed to
        start with the stub names.
    i : str or list-like
        Column(s) to use as id variable(s).
    j : str
        The name of the sub-observation variable. What you wish to name your
        suffix in the long format.
    sep : str, default ""
        A character indicating the separation of the variable names
        in the wide format, to be stripped from the names in the long format.
        For example, if your column names are A-suffix1, A-suffix2, you
        can strip the hyphen by specifying `sep='-'`.
    suffix : str, default '\\d+'
        A regular expression capturing the wanted suffixes. '\\d+' captures
        numeric suffixes. Suffixes with no numbers could be specified with the
        negated character class '\\D+'. You can also further disambiguate
        suffixes, for example, if your wide variables are of the form A-one,
        B-two,.., and you have an unrelated column A-rating, you can ignore the
        last one by specifying `suffix='(!?one|two)'`. When all suffixes are
        numeric, they are cast to int64/float64.
    
    Returns
    -------
    DataFrame
        A DataFrame that contains each stub name as a variable, with new index
        (i, j).
    
    See Also
    --------
    melt : Unpivot a DataFrame from wide to long format, optionally leaving
        identifiers set.
    pivot : Create a spreadsheet-style pivot table as a DataFrame.
    DataFrame.pivot : Pivot without aggregation that can handle
        non-numeric data.
    DataFrame.pivot_table : Generalization of pivot that can handle
        duplicate values for one index/column pair.
    DataFrame.unstack : Pivot based on the index values instead of a
        column.
    
    Notes
    -----
    All extra variables are left untouched. This simply uses
    `pandas.melt` under the hood, but is hard-coded to "do the right thing"
    in a typical case.
    
    Examples
    --------
    >>> np.random.seed(123)
    >>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
    ...                    "A1980" : {0 : "d", 1 : "e", 2 : "f"},
    ...                    "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
    ...                    "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
    ...                    "X"     : dict(zip(range(3), np.random.randn(3)))
    ...                   })
    >>> df["id"] = df.index
    >>> df
      A1970 A1980  B1970  B1980         X  id
    0     a     d    2.5    3.2 -1.085631   0
    1     b     e    1.2    1.3  0.997345   1
    2     c     f    0.7    0.1  0.282978   2
    >>> pd.wide_to_long(df, ["A", "B"], i="id", j="year")
    ... # doctest: +NORMALIZE_WHITESPACE
                    X  A    B
    id year
    0  1970 -1.085631  a  2.5
    1  1970  0.997345  b  1.2
    2  1970  0.282978  c  0.7
    0  1980 -1.085631  d  3.2
    1  1980  0.997345  e  1.3
    2  1980  0.282978  f  0.1
    
    With multiple id columns
    
    >>> df = pd.DataFrame({
    ...     'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
    ...     'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
    ...     'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
    ...     'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
    ... })
    >>> df
       famid  birth  ht1  ht2
    0      1      1  2.8  3.4
    1      1      2  2.9  3.8
    2      1      3  2.2  2.9
    3      2      1  2.0  3.2
    4      2      2  1.8  2.8
    5      2      3  1.9  2.4
    6      3      1  2.2  3.3
    7      3      2  2.3  3.4
    8      3      3  2.1  2.9
    >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age')
    >>> l
    ... # doctest: +NORMALIZE_WHITESPACE
                      ht
    famid birth age
    1     1     1    2.8
                2    3.4
          2     1    2.9
                2    3.8
          3     1    2.2
                2    2.9
    2     1     1    2.0
                2    3.2
          2     1    1.8
                2    2.8
          3     1    1.9
                2    2.4
    3     1     1    2.2
                2    3.3
          2     1    2.3
                2    3.4
          3     1    2.1
                2    2.9
    
    Going from long back to wide just takes some creative use of `unstack`
    
    >>> w = l.unstack()
    >>> w.columns = w.columns.map('{0[0]}{0[1]}'.format)
    >>> w.reset_index()
       famid  birth  ht1  ht2
    0      1      1  2.8  3.4
    1      1      2  2.9  3.8
    2      1      3  2.2  2.9
    3      2      1  2.0  3.2
    4      2      2  1.8  2.8
    5      2      3  1.9  2.4
    6      3      1  2.2  3.3
    7      3      2  2.3  3.4
    8      3      3  2.1  2.9
    
    Less wieldy column names are also handled
    
    >>> np.random.seed(0)
    >>> df = pd.DataFrame({'A(weekly)-2010': np.random.rand(3),
    ...                    'A(weekly)-2011': np.random.rand(3),
    ...                    'B(weekly)-2010': np.random.rand(3),
    ...                    'B(weekly)-2011': np.random.rand(3),
    ...                    'X' : np.random.randint(3, size=3)})
    >>> df['id'] = df.index
    >>> df # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS
       A(weekly)-2010  A(weekly)-2011  B(weekly)-2010  B(weekly)-2011  X  id
    0        0.548814        0.544883        0.437587        0.383442  0   0
    1        0.715189        0.423655        0.891773        0.791725  1   1
    2        0.602763        0.645894        0.963663        0.528895  1   2
    
    >>> pd.wide_to_long(df, ['A(weekly)', 'B(weekly)'], i='id',
    ...                 j='year', sep='-')
    ... # doctest: +NORMALIZE_WHITESPACE
             X  A(weekly)  B(weekly)
    id year
    0  2010  0   0.548814   0.437587
    1  2010  1   0.715189   0.891773
    2  2010  1   0.602763   0.963663
    0  2011  0   0.544883   0.383442
    1  2011  1   0.423655   0.791725
    2  2011  1   0.645894   0.528895
    
    If we have many columns, we could also use a regex to find our
    stubnames and pass that list on to wide_to_long
    
    >>> stubnames = sorted(
    ...     set([match[0] for match in df.columns.str.findall(
    ...         r'[A-B]\(.*\)').values if match != []])
    ... )
    >>> list(stubnames)
    ['A(weekly)', 'B(weekly)']
    
    All of the above examples have integers as suffixes. It is possible to
    have non-integers as suffixes.
    
    >>> df = pd.DataFrame({
    ...     'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
    ...     'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
    ...     'ht_one': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
    ...     'ht_two': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
    ... })
    >>> df
       famid  birth  ht_one  ht_two
    0      1      1     2.8     3.4
    1      1      2     2.9     3.8
    2      1      3     2.2     2.9
    3      2      1     2.0     3.2
    4      2      2     1.8     2.8
    5      2      3     1.9     2.4
    6      3      1     2.2     3.3
    7      3      2     2.3     3.4
    8      3      3     2.1     2.9
    
    >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age',
    ...                     sep='_', suffix=r'\w+')
    >>> l
    ... # doctest: +NORMALIZE_WHITESPACE
                      ht
    famid birth age
    1     1     one  2.8
                two  3.4
          2     one  2.9
                two  3.8
          3     one  2.2
                two  2.9
    2     1     one  2.0
                two  3.2
          2     one  1.8
                two  2.8
          3     one  1.9
                two  2.4
    3     1     one  2.2
                two  3.3
          2     one  2.3
                two  3.4
          3     one  2.1
                two  2.9


 12个pandas子模块又包含310个库函数(含类、方法、子模块)

import pandas as pd
funcs = [_ for _ in dir(pd) if not _.startswith('_')]
types = type(pd.DataFrame), type(pd.array), type(pd)
Names = 'Type','Function','Module','Other'
Types = {}
count = 0
 
for f in funcs:
    t = type(eval("pd."+f))
    t = Names[-1 if t not in types else types.index(type(eval("pd."+f)))]
    Types[t] = Types.get(t,[])+[f]
 
for j,n in enumerate(Types['Module'],1):
    print(f"\n{j}:【{n}】")
    fun = [_ for _ in dir(eval('pd.'+n)) if not _.startswith('_')]
    count += len(fun)
    for i,f in enumerate(fun,1):
        print(f'{f:18} ',end='' if i%5 or i==len(fun) else '\n')
    print("\n小计:",len(fun))

print("合计:",count)

1:【api】
extensions         indexers           types              
小计: 3

2:【arrays】
ArrowStringArray   BooleanArray       Categorical        DatetimeArray      FloatingArray      
IntegerArray       IntervalArray      PandasArray        PeriodArray        SparseArray        
StringArray        TimedeltaArray     
小计: 12

3:【compat】
F                  IS64               PY310              PY38               PY39               
PYPY               chainmap           get_lzma_file      import_lzma        is_numpy_dev       
is_platform_arm    is_platform_linux  is_platform_little_endian is_platform_mac    is_platform_windows 
np_array_datetime64_compat np_datetime64_compat np_version_under1p18 np_version_under1p19 np_version_under1p20 
numpy           pa_version_under1p0 pa_version_under2p0 pa_version_under3p0 pa_version_under4p0 
pickle_compat      platform           pyarrow            set_function_name  sys                
warnings           
小计: 31

4:【core】
accessor           aggregation        algorithms         api                apply              
array_algos        arraylike          arrays             base               common             
computation        config_init        construction       describe           dtypes             
flags              frame              generic            groupby            indexers           
indexes            indexing           internals          missing            nanops             
ops                reshape            roperator          series             shared_docs        
sorting            strings            tools              util               window             
小计: 35

5:【errors】
AbstractMethodError AccessorRegistrationWarning DtypeWarning       DuplicateLabelError EmptyDataError    
IntCastingNaNError InvalidIndexError  MergeError         NullFrequencyError NumbaUtilError  
OptionError        OutOfBoundsDatetime OutOfBoundsTimedelta ParserError        ParserWarning    
PerformanceWarning UnsortedIndexError UnsupportedFunctionCall 
小计: 18

6:【io】
api                clipboards         common             date_converters    excel              
feather_format     formats            gbq                html               json               
orc                parquet            parsers            pickle             pytables           
sas                spss               sql                stata              xml                
小计: 20

7:【offsets】
BDay               BMonthBegin        BMonthEnd          BQuarterBegin      BQuarterEnd        
BYearBegin         BYearEnd           BaseOffset         BusinessDay        BusinessHour       
BusinessMonthBegin BusinessMonthEnd   CBMonthBegin       CBMonthEnd        CDay
CustomBusinessDay  CustomBusinessHour CustomBusinessMonthBegin CustomBusinessMonthEnd DateOffset         
Day                Easter             FY5253             FY5253Quarter      Hour               
LastWeekOfMonth    Micro              Milli              Minute             MonthBegin         
MonthEnd           Nano               QuarterBegin       QuarterEnd         Second             
SemiMonthBegin     SemiMonthEnd       Tick               Week               WeekOfMonth        
YearBegin          YearEnd            
小计: 42

8:【pandas】
BooleanDtype       Categorical        CategoricalDtype   CategoricalIndex   DataFrame          
DateOffset         DatetimeIndex      DatetimeTZDtype    ExcelFile          ExcelWriter        
Flags              Float32Dtype       Float64Dtype       Float64Index       Grouper            
HDFStore           Index              IndexSlice         Int16Dtype         Int32Dtype         
Int64Dtype         Int64Index         Int8Dtype          Interval           IntervalDtype      
IntervalIndex      MultiIndex         NA                 NaT                NamedAgg           
Period             PeriodDtype        PeriodIndex        RangeIndex         Series             
SparseDtype        StringDtype        Timedelta          TimedeltaIndex     Timestamp          
UInt16Dtype        UInt32Dtype        UInt64Dtype        UInt64Index        UInt8Dtype         
api                array              arrays             bdate_range        compat             
concat             core               crosstab           cut                date_range         
describe_option    errors             eval               factorize          get_dummies        
get_option         infer_freq         interval_range     io                 isna               
isnull             json_normalize     lreshape           melt               merge              
merge_asof         merge_ordered      notna              notnull            offsets            
option_context     options            pandas             period_range       pivot              
pivot_table        plotting           qcut               read_clipboard     read_csv           
read_excel         read_feather       read_fwf           read_gbq           read_hdf           
read_html          read_json          read_orc           read_parquet       read_pickle        
read_sas           read_spss          read_sql           read_sql_query     read_sql_table     
read_stata         read_table         read_xml           reset_option       set_eng_float_format 
set_option         show_versions      test               testing            timedelta_range    
to_datetime        to_numeric         to_pickle          to_timedelta       tseries            
unique             util               value_counts       wide_to_long       
小计: 119

9:【plotting】
PlotAccessor       andrews_curves     autocorrelation_plot bootstrap_plot     boxplot
boxplot_frame      boxplot_frame_groupby deregister_matplotlib_converters hist_frame         hist_series
lag_plot           parallel_coordinates plot_params        radviz             register_matplotlib_converters 
scatter_matrix     table              
小计: 17

10:【testing】
assert_extension_array_equal assert_frame_equal assert_index_equal assert_series_equal 
小计: 4

11:【tseries】
api                frequencies        offsets            
小计: 3

12:【util】
Appender           Substitution       cache_readonly     hash_array         hash_pandas_object 
version            
小计: 6
合计: 310

其中第8个pandas就是主模块:

>>> dir(pd)==dir(pd.pandas)
True

对第4个子模块core再扩展一下:

import pandas as pd
funcs = [_ for _ in dir(pd.core) if not _.startswith('_')]
types = type(pd.DataFrame), type(pd.array), type(pd)
Names = 'Type','Function','Module','Other'
Types = {}
count = 0
 
for f in funcs:
    t = type(eval("pd.core."+f))
    t = Names[-1 if t not in types else types.index(type(eval("pd.core."+f)))]
    Types[t] = Types.get(t,[])+[f]
 
for j,n in enumerate(Types['Module'],1):
    print(f"\n{j}:【{n}】")
    fun = [_ for _ in dir(eval('pd.core.'+n)) if not _.startswith('_')]
    count += len(fun)
    for i,f in enumerate(fun,1):
        print(f'{f:18} ',end='' if i%5 or i==len(fun) else '\n')
    print("\n小计:",len(fun))

 又翻出1299个:

1:【accessor】
CachedAccessor     DirNamesMixin      PandasDelegate     annotations        delegate_names     
doc                register_dataframe_accessor register_index_accessor register_series_accessor warnings           
小计: 10

2:【aggregation】
ABCSeries          AggFuncType        Any                Callable           DefaultDict        
FrameOrSeries      Hashable           Index              Iterable           Sequence           
SpecificationError TYPE_CHECKING      annotations        com                defaultdict        
is_dict_like       is_list_like       is_multi_agg_with_relabel maybe_mangle_lambdas normalize_keyword_aggregation 
partial            reconstruct_func   relabel_result     validate_func_kwargs 
小计: 24

3:【algorithms】
ABCDatetimeArray   ABCExtensionArray  ABCIndex           ABCMultiIndex      ABCRangeIndex      
ABCSeries          ABCTimedeltaArray  AnyArrayLike       ArrayLike          DtypeObj           
FrameOrSeriesUnion PandasDtype        Scalar             SelectN            SelectNFrame       
SelectNSeries      TYPE_CHECKING      Union              algos              annotations        
cast        checked_add_with_arr construct_1d_object_array_from_listlike dedent        diff 
doc                duplicated         ensure_float64     ensure_object      ensure_platform_int 
ensure_wrapped_if_datetimelike extract_array      factorize          factorize_array    final
get_data_algo      htable             iNaT               infer_dtype_from_array is_array_like      
is_bool_dtype      is_categorical_dtype is_complex_dtype   is_datetime64_dtype is_extension_array_dtype 
is_float_dtype     is_integer         is_integer_dtype   is_list_like       is_numeric_dtype   
is_object_dtype    is_scalar          is_timedelta64_dtype isin               isna               
lib                mode               na_value_for_dtype needs_i8_conversion np                 
operator           pandas_dtype       pd_array           quantile           rank               
safe_sort          sanitize_to_nanoseconds searchsorted       take               take_nd            
union_with_duplicates unique             unique1d           validate_indices   value_counts       
value_counts_arraylike warn               
小计: 77

4:【api】
BooleanDtype       Categorical        CategoricalDtype   CategoricalIndex   DataFrame          
DateOffset         DatetimeIndex      DatetimeTZDtype    Flags              Float32Dtype       
Float64Dtype       Float64Index       Grouper            Index              IndexSlice         
Int16Dtype         Int32Dtype         Int64Dtype         Int64Index         Int8Dtype          
Interval           IntervalDtype      IntervalIndex      MultiIndex         NA                 
NaT                NamedAgg           Period             PeriodDtype        PeriodIndex        
RangeIndex         Series             StringDtype        Timedelta          TimedeltaIndex     
Timestamp          UInt16Dtype        UInt32Dtype        UInt64Dtype        UInt64Index        
UInt8Dtype         array              bdate_range        date_range         factorize          
interval_range     isna               isnull             notna              notnull            
period_range       set_eng_float_format timedelta_range    to_datetime        to_numeric 
to_timedelta       unique             value_counts       
小计: 58

5:【apply】
ABCDataFrame       ABCNDFrame         ABCSeries          AggFuncType        AggFuncTypeBase    
AggFuncTypeDict    AggObjType         Any                Apply              Axis               
DataError          Dict               FrameApply         FrameColumnApply   FrameOrSeries      
FrameOrSeriesUnion FrameRowApply      GroupByApply       Hashable           Iterator 
List           NDFrameApply       ResType            ResamplerWindowApply SelectionMixin
SeriesApply        SpecificationError TYPE_CHECKING      abc                annotations        
cache_readonly     cast               com                create_series_with_explicit_dtype ensure_wrapped_if_datetimelike 
frame_apply        inspect            is_dict_like       is_extension_array_dtype is_list_like       
is_nested_object   is_sequence        lib                np                 option_context     
pd_array           safe_sort          warnings           
小计: 48

6:【array_algos】
masked_reductions  putmask            quantile           replace            take               
transforms         
小计: 6

7:【arraylike】
Any                OpsMixin           array_ufunc        extract_array      lib                
maybe_dispatch_ufunc_to_dunder_op np                 operator           roperator          unpack_zerodim_and_defer 
warnings           
小计: 11

8:【arrays】
ArrowStringArray   BaseMaskedArray    BooleanArray       Categorical        DatetimeArray
ExtensionArray     ExtensionOpsMixin  ExtensionScalarOpsMixin FloatingArray      IntegerArray       
IntervalArray      PandasArray        PeriodArray        SparseArray        StringArray        
TimedeltaArray     base               boolean            categorical        datetimelike       
datetimes          floating           integer            interval           masked             
numeric            numpy_             period             period_array       sparse             
string_            string_arrow       timedeltas         
小计: 33

9:【base】
ABCDataFrame       ABCIndex           ABCSeries          AbstractMethodError Any                
ArrayLike          DataError          DirNamesMixin      Dtype              DtypeObj           
ExtensionArray     FrameOrSeries      Generic            Hashable           IndexLabel         
IndexOpsMixin      NoNewAttributesMixin OpsMixin           PYPY           PandasObject 
SelectionMixin     Shape              SpecificationError TYPE_CHECKING      TypeVar            
algorithms         annotations        cache_readonly     cast               create_series_with_explicit_dtype 
doc                duplicated         final              is_categorical_dtype is_dict_like       
is_extension_array_dtype is_object_dtype    is_scalar          isna               lib                
nanops             np                 nv                 remove_na_arraylike textwrap           
unique1d           value_counts       
小计: 47

10:【common】
ABCExtensionArray  ABCIndex           ABCSeries          Any                AnyArrayLike       
Callable           Collection         Iterable           Iterator           NpDtype            
Scalar             SettingWithCopyError SettingWithCopyWarning T                  TYPE_CHECKING      
abc                all_none           all_not_none       annotations        any_none           
any_not_none       apply_if_callable  asarray_tuplesafe  builtins           cast               
cast_scalar_indexer consensus_name_attr construct_1d_object_array_from_listlike contextlib         convert_to_list_like 
count_not_none     defaultdict        flatten            get_callable_name  get_cython_func    
get_rename_function index_labels_to_array inspect            is_array_like      is_bool_dtype
is_bool_indexer    is_builtin_func    is_extension_array_dtype is_full_slice      is_integer
is_null_slice      is_true_slices     isna               iterable_not_string lib                
maybe_iterable_to_list maybe_make_list    not_none         np         np_version_under1p18 
partial            pipe               random_state       require_length_match standardize_mapping 
temp_setattr       warnings           
小计: 62

11:【computation】
align              api                check              common             engines            
eval               expr               expressions        ops                parsing            
pytables           scope              
小计: 12

12:【config_init】
cf                 chained_assignment colheader_justify_doc data_manager_doc   float_format_doc   
is_bool            is_callable        is_instance_factory is_int             is_nonnegative_int 
is_one_of_factory  is_terminal        is_text            max_cols           max_colwidth_doc   
os      parquet_engine_doc pc_ambiguous_as_wide_doc pc_chop_threshold_doc pc_colspace_doc
pc_east_asian_width_doc pc_expand_repr_doc pc_html_border_doc pc_html_use_mathjax_doc pc_large_repr_doc  
pc_latex_escape    pc_latex_longtable pc_latex_multicolumn pc_latex_multicolumn_format pc_latex_multirow  
pc_latex_repr_doc  pc_max_categories_doc pc_max_cols_doc    pc_max_info_cols_doc pc_max_info_rows_doc 
pc_max_rows_doc    pc_max_seq_items   pc_memory_usage_doc pc_min_rows_doc    pc_multi_sparse_doc 
pc_nb_repr_h_doc   pc_pprint_nest_depth pc_precision_doc   pc_show_dimensions_doc pc_table_schema_doc 
pc_width_doc       plotting_backend_doc reader_engine_doc  register_converter_cb register_converter_doc 
register_plotting_backend_cb sql_engine_doc     string_storage_doc styler_max_elements styler_sparse_columns_doc 
styler_sparse_index_doc table_schema_cb    tc_sim_interactive_doc use_bottleneck_cb  use_bottleneck_doc 
use_inf_as_na_cb   use_inf_as_na_doc  use_inf_as_null_doc use_numba_cb       use_numba_doc      
use_numexpr_cb     use_numexpr_doc    warnings           writer_engine_doc  
小计: 69

13:【construction】
ABCExtensionArray  ABCIndex    ABCPandasArray     ABCRangeIndex      ABCSeries
Any            AnyArrayLike       ArrayLike          DatetimeTZDtype    Dtype              
DtypeObj           ExtensionDtype     IntCastingNaNError Sequence       TYPE_CHECKING
annotations        array              cast               com                construct_1d_arraylike_from_scalar 
construct_1d_object_array_from_listlike create_series_with_explicit_dtype ensure_wrapped_if_datetimelike extract_array      is_datetime64_ns_dtype 
is_empty_data      is_extension_array_dtype is_float_dtype     is_integer_dtype   is_list_like
is_object_dtype    is_timedelta64_ns_dtype isna               lib                ma                 
maybe_cast_to_datetime maybe_cast_to_integer_array maybe_convert_platform maybe_infer_to_datetimelike maybe_upcast       
np                 range_to_ndarray   registry           sanitize_array     sanitize_masked_array 
sanitize_to_nanoseconds warnings           
小计: 47

14:【describe】
ABC                Callable           DataFrameDescriber FrameOrSeries      FrameOrSeriesUnion 
Hashable           NDFrameDescriberAbstract Sequence           SeriesDescriber    TYPE_CHECKING      
Timestamp          abstractmethod     annotations        cast               concat             
describe_categorical_1d describe_ndframe   describe_numeric_1d describe_timestamp_1d describe_timestamp_as_categorical_1d 
format_percentiles is_bool_dtype      is_datetime64_any_dtype is_numeric_dtype   is_timedelta64_dtype 
np                 refine_percentiles reorder_columns    select_describe_func validate_percentile 
warnings           
小计: 31

15:【dtypes】
api                base               cast               common             concat             
dtypes             generic            inference          missing            
小计: 9

16:【flags】
Flags              weakref            
小计: 2

17:【frame】
AggFuncType        Any                AnyArrayLike       AnyStr             Appender           
ArrayLike          ArrayManager       Axes               Axis               BaseInfo           
BlockManager       CachedAccessor     Callable           CategoricalIndex   ColspaceArgType
CompressionOptions DataFrame          DataFrameInfo      DatetimeArray      DatetimeIndex
Dtype              ExtensionArray     ExtensionDtype     FilePathOrBuffer   FillnaOptions      
FloatFormatType    FormattersType     FrameOrSeriesUnion Frequency         Hashable 
IO                 Index              IndexKeyFunc       IndexLabel         Iterable           
Iterator           Level              MultiIndex         NDFrame            NpDtype            
OpsMixin           PeriodIndex        PythonFuncType     Renamer            Scalar             
Sequence           Series             SparseFrameAccessor StorageOptions     StringIO           
Substitution       Suffixes           TYPE_CHECKING      TimedeltaArray     ValueKeyFunc       
abc                algorithms         annotations        arrays_to_mgr      cast               
check_bool_indexer check_key_length   collections        com                console            
construct_1d_arraylike_from_scalar construct_2d_arraylike_from_scalar convert_to_index_sliceable dataclasses_to_dicts datetime           
dedent        deprecate_kwarg    deprecate_nonkeyword_arguments dict_to_mgr      doc
duplicated      ensure_index       ensure_index_from_sequences ensure_platform_int extract_array
find_common_type   fmt                functools          generic            get_group_index    
get_handle         get_option         ibase              import_optional_dependency infer_dtype_from_object 
infer_dtype_from_scalar invalidate_string_dtypes is_1d_only_ea_dtype is_1d_only_ea_obj  is_bool_dtype      
is_dataclass       is_datetime64_any_dtype is_dict_like       is_dtype_equal     is_extension_array_dtype 
is_float           is_float_dtype     is_hashable        is_integer         is_integer_dtype   
is_iterator        is_list_like       is_object_dtype    is_scalar          is_sequence        
isna               itertools          lexsort_indexer    lib                libalgos           
ma                 maybe_box_native   maybe_downcast_to_dtype maybe_droplevels   melt
mgr_to_mgr         mmap               nanops             nargsort           ndarray_to_mgr     
nested_data_to_arrays no_default         notna              np                 nv                 
ops                overload           pandas             pandas_dtype       properties         
rec_array_to_mgr   reconstruct_func   relabel_result     reorder_arrays     rewrite_axis_style_signature 
sanitize_array     sanitize_masked_array take_2d_multi      to_arrays      treat_as_nested
validate_axis_style_args validate_bool_kwarg validate_numeric_casting validate_percentile warnings
小计: 150

18:【generic】
ABCDataFrame       ABCSeries          AbstractMethodError Any                AnyStr             
ArrayManager       Axis               BlockManager       Callable           CompressionOptions 
DataFrameFormatter DataFrameRenderer  DatetimeIndex      Dtype              DtypeArg  
DtypeObj           Expanding          ExponentialMovingWindow ExtensionArray     FilePathOrBuffer   
Flags              FrameOrSeries      Hashable           Index              IndexKeyFunc       
IndexLabel         InvalidIndexError  JSONSerializable   Level              Manager            
Mapping            MultiIndex         NDFrame            NpDtype            PandasObject       
Period             PeriodIndex        RangeIndex         Renamer            Rolling            
Sequence        SingleArrayManager StorageOptions     T       TYPE_CHECKING
Tick           TimedeltaConvertibleTypes Timestamp       TimestampConvertibleTypes ValueKeyFunc
Window             algos              align_method_FRAME annotations        arraylike          
bool_t             cast               collections        com                concat             
config             create_series_with_explicit_dtype describe_ndframe   doc                ensure_index       
ensure_object      ensure_platform_int ensure_str         extract_array      final              
find_valid_index   fmt                functools          gc                 get_indexer_indexer 
ibase              import_optional_dependency indexing           is_bool            is_bool_dtype      
is_datetime64_any_dtype is_datetime64tz_dtype is_dict_like       is_dtype_equal     is_extension_array_dtype 
is_float           is_hashable        is_list_like       is_nested_list_like is_number          
is_numeric_dtype   is_object_dtype    is_re_compilable   is_scalar   is_timedelta64_dtype
isna               json               lib                mgr_to_mgr         missing            
nanops             notna              np                 nv                 operator           
overload           pandas_dtype       pickle             pprint_thing       re                 
rewrite_axis_style_signature timedelta          to_offset          validate_ascending validate_bool_kwarg 
validate_fillna_kwargs warnings           weakref            
小计: 118

19:【groupby】
DataFrameGroupBy   GroupBy            Grouper            NamedAgg           SeriesGroupBy      
base               categorical        generic            groupby            grouper            
numba_             ops                
小计: 12

20:【indexers】
ABCIndex           ABCSeries          Any                AnyArrayLike       ArrayLike          
TYPE_CHECKING      annotations        check_array_indexer check_key_length   check_setitem_lengths 
deprecate_ndim_indexing is_array_like      is_bool_dtype      is_empty_indexer   is_exact_shape_match 
is_extension_array_dtype is_integer         is_integer_dtype   is_list_like       is_list_like_indexer 
is_scalar_indexer  is_valid_positional_slice length_of_indexer  maybe_convert_indices np
unpack_1tuple      validate_indices   warnings           
小计: 28

21:【indexes】
accessors          api                base               category           datetimelike       
datetimes          extension          frozen             interval           multi              
numeric            period             range              timedeltas         
小计: 14

22:【indexing】
ABCDataFrame       ABCSeries          AbstractMethodError Any                CategoricalIndex   
Hashable           Index              IndexSlice         IndexingError      IndexingMixin      
IntervalIndex      InvalidIndexError  MultiIndex         NDFrameIndexerBase Sequence           
TYPE_CHECKING      algos              annotations        check_array_indexer check_bool_indexer 
com                concat_compat      convert_from_missing_indexer_tuple convert_missing_indexer convert_to_index_sliceable 
doc                ensure_index       extract_array      infer_fill_value   is_array_like      
is_bool_dtype      is_empty_indexer   is_exact_shape_match is_hashable        is_integer
is_iterator        is_label_like      is_list_like       is_list_like_indexer is_nested_tuple    
is_numeric_dtype   is_object_dtype    is_scalar          is_sequence        isna               
item_from_zerodim  length_of_indexer  maybe_convert_ix   need_slice         needs_i8_conversion 
np                 pd_array           suppress           warnings           
小计: 54

23:【internals】
ArrayManager       Block              BlockManager       DataManager        DatetimeTZBlock    
ExtensionBlock     NumericBlock       ObjectBlock        SingleArrayManager SingleBlockManager 
SingleDataManager  api                array_manager      base               blocks             
concat             concatenate_managers construction       create_block_manager_from_arrays create_block_manager_from_blocks 
make_block         managers           ops                
小计: 23

24:【missing】
Any                ArrayLike          Axis               F                  NP_METHODS         
SP_METHODS         TYPE_CHECKING      algos              annotations        cast               
check_value_size   clean_fill_method  clean_interp_method clean_reindex_fill_method find_valid_index   
get_fill_func      import_optional_dependency infer_dtype_from   interpolate_1d     interpolate_2d     
interpolate_2d_with_fill interpolate_array_2d is_array_like      is_numeric_v_string_like is_valid_na_for_dtype 
isna               lib                mask_missing       na_value_for_dtype needs_i8_conversion 
np                 partial            wraps              
小计: 33

25:【nanops】
Any                ArrayLike          Dtype              DtypeObj           F                  
NaT                NaTType            PeriodDtype        Scalar             Shape              
Timedelta          annotations        bn                 bottleneck_switch  cast               
check_below_min_count disallow           extract_array      functools          get_corr_func      
get_dtype          get_empty_reduction_result get_option         iNaT               import_optional_dependency 
is_any_int_dtype   is_bool_dtype      is_complex         is_datetime64_any_dtype is_float
is_float_dtype     is_integer         is_integer_dtype   is_numeric_dtype   is_object_dtype    
is_scalar          is_timedelta64_dtype isna               itertools          lib                
make_nancomp       na_accum_func      na_value_for_dtype nanall             nanany             
nanargmax          nanargmin          nancorr            nancov             naneq              
nange              nangt              nankurt            nanle              nanlt              
nanmax             nanmean            nanmedian          nanmin             nanne              
nanpercentile      nanprod            nansem             nanskew            nanstd             
nansum             nanvar             needs_i8_conversion notna              np                 
np_percentile_argname operator        pandas_dtype       set_use_bottleneck warnings
小计: 75

26:【ops】
ABCDataFrame       ABCSeries          ARITHMETIC_BINOPS  Appender           COMPARISON_BINOPS  
Level              TYPE_CHECKING      add_flex_arithmetic_methods algorithms         align_method_FRAME 
align_method_SERIES annotations        arithmetic_op      array_ops          common             
comp_method_OBJECT_ARRAY comparison_op      dispatch           docstrings         fill_binop         
flex_arith_method_FRAME flex_comp_method_FRAME flex_method_SERIES frame_arith_method_with_reindex get_array_op       
get_op_result_name invalid            invalid_comparison is_array_like      is_list_like       
isna               kleene_and         kleene_or          kleene_xor         logical_op         
make_flex_doc      mask_ops           maybe_dispatch_ufunc_to_dunder_op maybe_prepare_scalar_for_op methods            
missing            np                 operator           radd               rand_              
rdiv               rdivmod            rfloordiv          rmod               rmul               
roperator          ror_               rpow               rsub               rtruediv           
rxor               should_reindex_frame_op unpack_zerodim_and_defer warnings           
小计: 59

27:【reshape】
api                concat             melt               merge              pivot              
reshape            tile               util               
小计: 8

28:【roperator】
operator           radd               rand_              rdiv               rdivmod            
rfloordiv          rmod               rmul               ror_               rpow               
rsub               rtruediv           rxor               
小计: 13

29:【series】
ABCDataFrame       AggFuncType        Any                Appender           ArrayLike          
Axis               CachedAccessor     Callable           CategoricalAccessor CategoricalIndex   
CombinedDatetimelikeProperties DatetimeIndex      Dtype              DtypeObj           ExtensionArray     
FillnaOptions      Float64Index       FrameOrSeriesUnion Hashable           IO                 
Index              IndexKeyFunc       InvalidIndexError  Iterable           MultiIndex         
NDFrame            NpDtype            PeriodIndex        Sequence           Series             
SeriesApply        SingleArrayManager SingleBlockManager SingleManager      SparseAccessor     
StorageOptions     StringIO           StringMethods      Substitution       TYPE_CHECKING      
TimedeltaIndex     Union              ValueKeyFunc       algorithms         annotations        
base               cast               check_bool_indexer com                convert_dtypes     
create_series_with_explicit_dtype dedent             deprecate_ndim_indexing deprecate_nonkeyword_arguments doc                
ensure_index       ensure_key_mapped  ensure_platform_int ensure_wrapped_if_datetimelike extract_array      
fmt                generic            get_option         get_terminal_size  ibase              
is_bool            is_dict_like       is_empty_data      is_hashable        is_integer         
is_iterator        is_list_like       is_object_dtype    is_scalar          isna               
lib                maybe_box_native   maybe_cast_pointwise_result missing            na_value_for_dtype 
nanops             nargsort           no_default         notna              np                 
nv                 ops                overload           pandas             pandas_dtype       
properties         remove_na_arraylike reshape            sanitize_array     to_datetime        
tslibs             unpack_1tuple      validate_all_hashable validate_bool_kwarg validate_numeric_casting 
validate_percentile warnings           weakref            
小计: 103

30:【shared_docs】
annotations        
小计: 1

31:【sorting】
ABCMultiIndex      ABCRangeIndex      Callable           DefaultDict        IndexKeyFunc       
Iterable           Sequence           Shape              TYPE_CHECKING      algos              
annotations        compress_group_index decons_group_index decons_obs_group_ids defaultdict 
ensure_int64       ensure_key_mapped  ensure_platform_int extract_array      get_compressed_ids 
get_flattened_list get_group_index    get_group_index_sorter get_indexer_dict   get_indexer_indexer 
hashtable    indexer_from_factorized is_extension_array_dtype is_int64_overflow_possible isna
lexsort_indexer    lib         nargminmax         nargsort           np
unique_label_indices 
小计: 36

32:【strings】
BaseStringArrayMethods StringMethods      accessor           base        object_array 
小计: 5

33:【tools】
datetimes          numeric            timedeltas         times              
小计: 4

34:【util】
hashing            numba_             
小计: 2

35:【window】
Expanding          ExpandingGroupby   ExponentialMovingWindow ExponentialMovingWindowGroupby Rolling            
RollingGroupby     Window             common             doc                ewm                
expanding          indexers           numba_             online             rolling            
小计: 15
合计: 1299

待续......


下一篇链接:

https://hannyang.blog.csdn.net/article/details/128431737

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/113585.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

BUUCTF Misc [ACTF新生赛2020]NTFS数据流 john-in-the-middle [ACTF新生赛2020]swp 喵喵喵

目录 [ACTF新生赛2020]NTFS数据流 john-in-the-middle [ACTF新生赛2020]swp 喵喵喵 [ACTF新生赛2020]NTFS数据流 下载文件 得到500个txt文件&#xff0c;提示了NTFS流隐写&#xff0c;所以使用NtfsStreamsEditor2查看 得到flag flag{AAAds_nntfs_ffunn?} jo…

mybatis-plus代码生成器AutoGenerator

文章目录前言一、给指定的模块生成代码1.1 创建maven模块1.2 导入依赖1.3 代码生成类1.4 测试二、给指定的项目生成代码2.1 创建maven项目2.2 导入依赖2.3 代码生成类2.4 测试三、步骤区别前言 AutoGenerator 是 MyBatis-Plus 的代码生成器&#xff0c;通过 AutoGenerator 可以…

一文弄懂 React 生命周期

1. 类组件生命周期原理 React 中有两个核心阶段&#xff1a; 1.调和 (render) 阶段遍历 Fiber 树&#xff0c;通过 diff 算法找出变化的部分&#xff0c;如果是组件则会执行其 render 函数进行更新2.commit 阶段根据调和的结果去创建或修改真实 DOM 节点生命周期是贯穿在一个…

C++ Primer 课后习题详解 | 2.1.1 算术类型

&#x1f388; 作者&#xff1a;Linux猿 &#x1f388; 简介&#xff1a;CSDN博客专家&#x1f3c6;&#xff0c;华为云享专家&#x1f3c6;&#xff0c;Linux、C/C、云计算、物联网、面试、刷题、算法尽管咨询我&#xff0c;关注我&#xff0c;有问题私聊&#xff01; &…

Python pandas库|任凭弱水三千,我只取一瓢饮(6)

上一篇链接&#xff1a; Python pandas库&#xff5c;任凭弱水三千&#xff0c;我只取一瓢饮&#xff08;5&#xff09;_Hann Yang的博客-CSDN博客 DataFrame 类方法&#xff08;211个&#xff0c;其中包含18个子类、2个子模块&#xff09; >>> import pandas as p…

Python pandas库|任凭弱水三千,我只取一瓢饮(1)

对Python的 pandas 库所有的内置元类、函数、子模块等全部浏览一遍&#xff0c;然后挑选一些重点学习一下。我安装的库版本号为1.3.5&#xff0c;如下&#xff1a; >>> import pandas as pd >>> pd.__version__ 1.3.5 >>> print(pd.__doc__)pandas…

Google Earth Engine APP(GEE)——再地图上加载各种选择器

本次我们尝试将GEE UI中的小组件进行加载,让其设定在特定的面板上,并且加载到地图上,先看一下我们最终成型的效果, 文中代码所使用到的函数: ui.Select(items, placeholder, value, onChange, disabled, style) 带有回调的可打印选择菜单。 参数: 项目(列表<对象…

day29【代码随想录】回溯之组合总和、组合总和||

文章目录前言一、组合总和&#xff08;力扣39&#xff09;剪枝优化二、组合总和II&#xff08;力扣40&#xff09;前言 1、组合总和 2、组合总和|| 一、组合总和&#xff08;力扣39&#xff09; 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target &#xff0…

Smart Table Personalization 功能的一些单步调试

SmartTable 的 _onMetadataInitialised 方法里&#xff1a; 如果标志位 bIsInitialised 已经赋值&#xff0c;说明已经初始化过了&#xff0c;直接返回。 这里说明 SmartTable 有一个自动调整宽度的属性设置&#xff1a;getEnableAutoColumnWidth 拿到 Table view 的metadat…

C++11标准模板(STL)- 算法(std::accumulate)

定义于头文件 <algorithm> 算法库提供大量用途的函数&#xff08;例如查找、排序、计数、操作&#xff09;&#xff0c;它们在元素范围上操作。注意范围定义为 [first, last) &#xff0c;其中 last 指代要查询或修改的最后元素的后一个元素。 对一个范围内的元素求和 …

node.js+uni计算机毕设项目基于微信小程序的大型商场一体化平台(程序+小程序+LW)

该项目含有源码、文档、程序、数据库、配套开发软件、软件安装教程。欢迎交流 项目运行 环境配置&#xff1a; Node.js Vscode Mysql5.7 HBuilderXNavicat11VueExpress。 项目技术&#xff1a; Express框架 Node.js Vue 等等组成&#xff0c;B/S模式 Vscode管理前后端分离等…

我求求你了,GC日志打印别再瞎配置了

​ 编辑切换为居中 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 生产环境上&#xff0c;或者其他要测试 GC 问题的环境上&#xff0c;一定会配置上打印GC日志的参数&#xff0c;便于分析 GC 相关的问题。 但是可能很多人配置得都不够“完美”&#…

excel图文教程:深入了解数据分析函数FREQUENCY

1.FREQUENCY函数的作用及语法 关于这个函数的作用官方的解释是&#xff1a;以一列垂直数组返回一组数据的频率分布。 语法&#xff1a;FREQUENCY&#xff08;DATA_ARRAY&#xff0c;BINS_ARRAY&#xff09; FREQUENCY函数的第二参数可以是单元格区域&#xff0c;也可以是常量…

如何创建你自己的谷歌浏览器扩展

如果你是谷歌浏览器的用户&#xff0c;你可能已经在浏览器中使用了一些扩展。 你是否曾想过如何自己建立一个&#xff1f;在这篇文章中&#xff0c;我将向你展示如何从头开始创建一个Chrome扩展。 目录 什么是Chrome扩展&#xff1f;我们的Chrome扩展会是什么样子的&#xf…

DSP-时域中的离散信号

目录 离散时间信号的表示: 离散信号的时域表示: 序列的长度: ​编辑 信号的能量和功率: 序列的基本运算 : 相乘 (product): 相加(addition): 放大(multiplication): 时移(time-shifting): 时间反转(time-reversal): 线性卷积: 抽样率转换: 有限长序列的运算: 离散…

Wireshark 实用篇2:Wireshark 抓包常用过滤命令

目录 前言 正文 一、根据 IP 地址过滤 二、根据端口过滤 三、根据协议过滤 四、根据 Payload Type 条件过滤 五、根据组合条件过滤 六、实例分析 前言 使用 Wireshark 工具进行网络抓包属于研发人员的基础技能&#xff0c;如果你还不了解&#xff0c;建议从现在开始…

RabbitMQ 第二天 高级 7 RabbitMQ 高级特性 7.7 日志与监控

RabbitMQ 【黑马程序员RabbitMQ全套教程&#xff0c;rabbitmq消息中间件到实战】 文章目录RabbitMQ第二天 高级7 RabbitMQ 高级特性7.7 日志与监控7.7.1 RabbitMQ 日志7.7.2 web 管控台监控7.7.3 rabbitmqctl 管理和监控第二天 高级 7 RabbitMQ 高级特性 7.7 日志与监控 老师…

SpringBoot+Mybatis-Plus+Thymeleaf+Bootstrap分页页查询(前后端完整版开源学习)图书管理系统

目录分页主要逻辑&#xff0c;在3.7和3.81.准备工作1.1 参考博客1.2 项目结构2. 数据库3. 详细代码部分3.1 pom依赖3.2 application.yml3.3 BookMapper.xml3.4 BookMapper3.5 BookService 和 BookServiceImpl3.6 实体类entity book3.7控制层 BookController3.8 前端页面bookLis…

LabVIEW如何减少下一代测试系统中的硬件过时3

LabVIEW如何减少下一代测试系统中的硬件过时3 Initial System Configuration As shown in Figure 4, the test application is running on an NI PXIembedded controller with Windows XP. The PXI controller is connected to theAgilent 33220A signal generator through L…

只需几次点击即可创建一个Astra和LearnDash在线教育网站 – 简单快捷!

Astra为不喜欢从头开始设计网站的任何人提供了一个巨大的入门模板库。 这些网站是使用各种页面构建器制作的&#xff0c;例如 Elementor、Beaver Builder、Brizy 以及 Gutenberg——WordPress 的默认新编辑器。如果您喜欢这些网站中的任何一个&#xff0c;只需单击一下即可将其…