k-近邻算法概述,k-means与k-NN的区别对比

news2024/11/14 6:19:25

目录

k-近邻算法概述

k-近邻算法细节

k值的选取

分类器的决策

k-means与k-NN的区别对比


k-近邻算法概述

k近邻(k-nearest neighbor,  k-NN)算法由 Cover 和 Hart 于1968年提出,是一种简单的分类方法。通俗来说,就是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的 k 个实例,这 k 个实例的多数属于某个类,就把该输入实例分类到这个类中(类似于投票时少数服从多数的思想)。接下来读者来看下引自维基百科上的一幅图:

图片

图1:数据

如上图 1 所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所示的数据则是待分类的数据,那它的类别是什么?下面根据 k 近邻的思想来给绿色圆点进行分类。

如果 k=3,绿色圆点的最邻近的 3 个点是 2 个红色小三角形和 1 个蓝色小正方形,根据少数服从多数的思想,判定绿色的这个待分类点属于红色的三角形一类。如果 k=5,绿色圆点最邻近的 5 个邻居是 2 个红色三角形和 3 个蓝色的正方形,根据少数服从多数的思想,判定绿色的这个待分类点属于蓝色的正方形一类。

上面的例子形象展示了 k 近邻的算法思想,可以看出 k 近邻的算法思想非常简单。

k-近邻算法细节

k值的选取

假设有训练数据和待分类点如下图 2,图中有两类,一个是黑色的圆点,一个是蓝色的长方形,待分类点是红色的五边形。根据 k 近邻算法步骤来决定待分类点应该归为哪一类。读者能够看出来五边形离黑色的圆点最近,k 为1,因此最终判定待分类点是黑色的圆点。假设 k=1,那么测试样本的分类结果只受距离最近的一个样本影响,这种情况下模型很容易学习到噪声,出现过拟合。

图片

图2:训练数据

明显这样分类是错误的,此时距离五边形最近的黑色圆点是一个噪声,如果 k 太小,分类结果受距离最近的一些样本影响,这种情况下模型很容易学习到噪声,出现过拟合。

如果k大一点,k 等于8,把长方形都包括进来,很容易得到正确的分类应该是蓝色的长方形!如下图:

图片

图3:k=8

如果K与训练样本的总数相等,那会出现什么样的分类结果呢?

如果 k=N(N为训练样本的个数),那么无论输入实例是什么,都将简单地预测它属于在训练实例中最多的类。这相当于没有训练模型!直接拿训练数据统计了一下各个数据的类别,找最大的而已!如下图所示:

图片

图3:k=N

为了避免出现以上两种极端情况,实践中我们会用到交叉验证,即从 k=1 开始,使用验证集去估计分类器的错误率,然后将 k 依次加1,每次计算分类器的整体错误率,不断重复这个过程,最后就能得到错误率最小的 k 值,这就是我们要找的合适的 k 值。需要注意的是,一般 k 的取值不超过20,并且要尽量取奇数,以避免在最终分类结果中出现样本数相同的两个类别。

分类器的决策

在上面几个例子中,判断待决策样本属于哪一类时,都是根据少数服从多数的思想。为什么根据这种思想做分类决策,背后的原理是什么呢?

假设分类的损失函数为0-1损失函数,分类函数为

 

k-means与k-NN的区别对比

k-means与k-NN是经常容易被混淆的两个算法,即使是做了多年机器学习的老江湖,也可能嘴瓢或者忘记两个算法的区分。

两种算法之间的根本区别是:

k-means是无监督学习,k-NN是监督学习;

k-means解决聚类问题,k-NN解决分类或回归问题。

图片

k-means算法把一个数据集分割成簇,使得形成的簇是同构的,每个簇里的点相互靠近

k-NN算法尝试基于其k个(可以是任何数目)周围邻居来对未标记的实例进行分类。

k-means算法的训练过程需要反复的迭代操作(寻找新的质心),但是k-NN不需要。

k-means中的k代表的是簇中心

k-NN的k代表的是选择与测试样本距离最近的前k个训练样本数。

k-means

k-NN

学习范式

无监督学习算法

监督学习算法

提出时间

1967年

1968年

适用问题

解决聚类问题

解决分类或回归问题

核心思想

物以类聚,人以群分

近朱者赤,近墨者黑

算法原理

k-means是基于中心的聚类方法,通过迭代,将样本分到k个类中,使得每个样本与其所属类的中心或均值最近;得到k个类别,构成对空间的划分。

k-NN算法简单、直观,给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最近邻的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类。

算法流程

k-means聚类的算法是一个迭代过程,每次迭代包括两个步骤。首先选择k个类的中心,将样本逐个指派到与其最近的中心的类中,得到一个聚类结果;然后更新每个类的样本的均值,作为类的新的中心;重复上述步骤,直到收敛为止。

(1)当有新的测试样本出现时,计算其到训练集中每个数据点的距离;(距离度量)

(2)根据距离选择与测试样本距离最小的前k个训练样本;(k值选择)

(3)基于这k个训练样本的类别来划分新样本的类别,通常选择这k个训练样本中出现次数最多的标签作为新样本的类别。(决策规则)

算法图示

图片

图片

k的意义

k是类的数目

k是用来计算的相邻数据数

k的选择

k是类的数目,是人为设定的数字。可以尝试不同的k值聚类,检验各自得到聚类结果的质量,推测最优的k值。聚类结果的质量可以用类的平均直径来衡量。一般地,类别数变小时,平均直径会增加;类别数变大超过某个值以后,平均直径会不变;而这个值正式最优的k值。实验时,可以采用二分查找,快速找到最优的k值。

k值的选择会对k-NN的结果产生重大影响。

·如果选择较小的k值,就相当于用较小的邻域中的训练实例进行预测,“学习”的近似误差(approximation error)会减小,只有与输入实例较近的(相似的)训练实例才会对预测结果起作用。但缺点是“学习”的估计误差(estimation error)会增大,预测结果会对近邻的实例点非常敏感。如果邻近的实例点恰巧是噪声,预测就会出错。换句话说,k值的减小就意味着整体模型变得复杂,容易发生过拟合。

·如果选择较大的k值,就相当于用较大邻域中的训练实例进行预测。其优点是可以减少学习的估计误差,但缺点是学习的近似误差会增大。这时与输入实例较远的(不相似的)训练实例也会对预测起作用,使预测发生错误。k值的增大就意味着整体的模型变得简单。

·如果k=n,那么无论输入实例是什么,都将简单地预测它属于在训练实例中最多的类。这时,模型过于简单,完全忽略训练实例中的大量有用信息,是不可取的。

·在应用中,k值一般取一个比较小的数值。通常采用交叉验证法来选取最优的k值。

k与结果

k值确定后每次结果可能不同,从 n 个数据对象任意选择 k 个对象作为初始聚类中心,随机性对结果影响较大。

k-NN算法中,当训练集、距离度量(如欧氏距离)、k值和决策规则(如多数表决)确定后,对于任何一个新输入的实例,它所属的类唯一确定。

复杂度

时间复杂度:O(n*k*t),n为训练实例数,k为聚类数,t为迭代次数。

线性扫描时间复杂度:O(n)

kd树方法时间复杂度:O(logn)

算法特点

是基于划分的聚类方法;类别数k事先指定;以欧氏距离平方表示样本之间的距离,以中心或样本的均值表示类别;以样本和其所属类的中心之间的距离的总和为最优化的目标函数;得到的类别是平坦的、非层次化的;算法是迭代算法,不能保证得到全局最优。

k-NN算法没有显式的学习过程;实现k-NN时,主要考虑问题是如何对训练数据进行快速k近邻搜索。

算法优点

1、解决聚类问题的经典算法,简单、快速;

2、当处理大数据集时,算法保持可伸缩性和高效率;

3、当簇近似为高斯分布时,效果较好;

4、时间复杂度近于线性,适合挖掘大规模数据集。

1、对输入数据无假定,如不会假设输入数据是服从正太分布;

2、k-NN可以处理分类问题,同时天然可以处理多分类问题,比如鸢尾花的分类;

3、简单,易懂,同时也很强大,对于手写数字的识别,鸢尾花这一类问题来说,准确率很高;

4、k-NN还可以处理回归问题,也就是预测;

5、对异常值不敏感;

6、可以用于数值型数据,也可以用于离散型数据。

算法缺点

1、类别数k需要事先指定;

2、对初值敏感,即对于不同的初值,可能会导致不同结果;

3、不适合非凸形状的簇或者大小差别很大的簇;

4、对噪声和孤立点敏感;

5、属于启发式算法,不能保证得到全局最优。

1、计算复杂度高,线性扫描方法需要计算输入实例与每一个训练实例的距离,当训练集很大时,计算非常耗时;可以通过kd树等方法改进;

2、严重依赖训练样本集,对训练数据的容错性差,如果训练数据集中,有一两个数据是错误的,刚刚好又在需要分类的数值的旁边,就会直接导致预测的数据的不准确;

3、距离度量方法以及k值的选取都有比较大的影响,k值选择不当则分类精度不能保证。

相似点

都包含这样的过程,给定一个点,在数据集中找离它最近的点,即二者都用到了NN(Nearest Neighbor)算法,一般用kd树来实现NN。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/930558.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux操作系统--网络配置(2)

在上一次课程中,我们对Linux课程中的网络有了一个了解,下面我们来看看如何配置网络IP。 1.配置网络IP地址 在Linux操作系统中,比如搭建集群,这一个时候如果使用DHCP实现动态IP的分配,那么如果需要访问管理其中一个节点操作时候,就需要通过其IP访问。这一个时候还得去查看…

十五、systemctl命令如何使用?

在Linux系统中,一些内置服务可以通过systemctl控制,部分第三方软件也可以通过systemctl控制。 1、基础语法 start:开启服务; stop:关闭服务; status:查看服务当前状态; enable&a…

【推荐】Spring与Mybatis集成整合

目录 1.概述 2.集成 2.1代码演示: 3.整合 3.1概述 3.2 进行整合分页 接着上两篇,我已经写了Mybatis动态之灵活使用,mybatis的分页和特殊字符的使用方式接下来把它们集成起来,是如何的呢👇👇&#x1…

Stm32的时钟系统以及使用SysTick滴答定时器实现延时

前言 STM32的时钟系统由多个时钟源和时钟树组成时钟源包括主时钟源(HSE)、内部高速时钟源(HSI)、内部低速时钟源(LSI)和外部低速时钟源(LSE)。时钟树由多个时钟分频器和时钟门控器组…

五、多表查询-2.概述分类

一、多表查询概述 二、演示 1、准备数据 (1)创建emp1表并注入数据,添加外键: 2、多表查询 一共 102条数据:17个员工,6个部门,176102 3、消除笛卡尔积 一共16条记录: 为啥17个员工&…

Aos插件实现滚动动画效果

aos文档 aos使用感受跟wow相似&#xff0c;但比wow多了浏览器回滚&#xff0c;动画效果会再次展现 安装 npm install aos使用 main.js全局导入css import aos/dist/aos.cssvue文件 <template><div class"box"><div class"code" v-for&q…

Java接收json参数

JSON 并不是唯一能够实现在互联网中传输数据的方式&#xff0c;除此之外还有一种 XML 格式。JSON 和 XML 能够执行许多相同的任务&#xff0c;那么我们为什么要使用 JSON&#xff0c;而不是 XML 呢&#xff1f; 之所以使用 JSON&#xff0c;最主要的原因是 JavaScript。众所周知…

搭建 Qt6 开发环境

作者&#xff1a; 一去、二三里 个人微信号&#xff1a; iwaleon 微信公众号&#xff1a; 高效程序员 Qt 是一个跨平台的 C 应用程序开发框架&#xff0c;它提供了丰富的组件库和工具&#xff0c;使得开发人员可以在各种平台上轻松地开发 GUI 应用程序。 由于我们的教程 《细说…

嵌入式设备应用开发(发现需求和提升价值)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 很多做技术的同学,都会陷入到技术的窠臼之中。对于如何做具体的产品、实现具体的技术,他们可能很感兴趣。但是做出来的东西做什么用,或者说是有没有竞争力,事实上他们不是很关心…

二叉搜索树-----红黑树

✅<1>主页&#xff1a;我的代码爱吃辣&#x1f4c3;<2>知识讲解&#xff1a;数据结构——红黑树☂️<3>开发环境&#xff1a;Visual Studio 2022&#x1f4ac;<4>前言&#xff1a;红黑树也是一颗二叉搜索树&#xff0c;其作为map&#xff0c;set的底层…

AttributeError: module ‘torchvision.io.image‘ has no attribute ‘ImageReadMode‘

我的torch和torchvision版本 import torch torch.__version__‘1.7.1cu110’ import torchvision torchvision.__version__‘0.8.2cu110’ 原代码 mode torchvision.io.image.ImageReadMode.RGB labels.append(torchvision.io.read_image(os.path.join(voc_dir, Segmentat…

文生图模型之Stable Diffusion

原始文章地址 autoencoder CLIP text encoder tokenizer最大长度为77&#xff08;CLIP训练时所采用的设置&#xff09;&#xff0c;当输入text的tokens数量超过77后&#xff0c;将进行截断&#xff0c;如果不足则进行paddings&#xff0c;这样将保证无论输入任何长度的文本&…

Vue2向Vue3过度核心技术综合案例

目录 1 面经基础版-案例效果分析1.面经效果演示2.功能分析3.实现思路分析&#xff1a;配置路由功能实现 2 面经基础版-一级路由配置3 面经基础版-二级路由配置1.使用场景2.语法3.代码实现 4 面经基础版-二级导航高亮1.实现思路2.代码实现 5 面经基础版-首页请求渲染1.步骤分析2…

新开通的抖店体验分太低,达人不愿意合作怎么办?解决办法如下

我是王路飞。 找达人带货的玩法是最适合新手抖店商家的&#xff0c;同时也是最适合长线去玩的方法。 但是新手前期找达人的时候&#xff0c;会有一个难点&#xff0c;就是自己的抖店因为是新开通的&#xff0c;所以要么没体验分&#xff0c;要么就是体验分太低了&#xff0c;…

崔东树:汽车行业正在迎来令人兴奋的时代,智能座舱推动私车普及

随着新能源汽车和智能座舱的不断发展&#xff0c;汽车行业正经历着一场革命性的变革。当前&#xff0c;不仅汽车电动化的进程在加速推进&#xff0c;智能座舱的升级与完善也成为了行业的热点话题。崔东树指出&#xff0c;随着汽车电动化和智能化的发展&#xff0c;智能座舱的快…

学习高等数学需要的初等数学知识

文章目录 名词解释常用希腊字符读音幂、根式和对数常用的三角函数值三角函数变换一元二次方程求解充分条件和必要条件切线方程、斜率和法线隐函数极坐标排列组合 名词解释 教材中存在着许多熟悉且陌生的词汇&#xff0c;作者在此进行了整理&#xff1a; 概念&#xff1a;概念…

开始MySQL之路—— DDL语法、DML语法、DQL语法基本操作详解

DDL语法 DDL&#xff08;Data Definition Language&#xff09; 数据定义语言&#xff0c;该语言部分包括以下内容。 对数据库的常用操作 对表结构的常用操作 修改表结构 对数据库的常用操作 1: 查看当前所有的数据库 show databases; 2&#xff1a;创建数据库 create dat…

Linux下的Shell基础——流程控制(三)

前言&#xff1a; 每门编程都有它独特的语法&#xff0c;比如C语言&#xff0c;Java等编程语言&#xff0c;有相同的地方也有自己独特的地方&#xff0c;但都离不开变量、运算符&#xff0c;条件判断、循环和函数这几个地方的学习&#xff0c;下面就让我们学习一下shell编程里…

CRM软件的功能与报价如何制定?

CRM软件很贵吗&#xff1f;CRM价格与系统功能、部署方式、用户数量、附加服务等有关。当然&#xff0c;不同的CRM厂商&#xff0c;也会有不同的定价模式。下面我们就来说说决定CRM系统报价的几个因素。 系统功能&#xff1a; CRM软件的功能越全面、越强大&#xff0c;其定价也…

携手共进:OpenAI与ScaleAI开展合作,为企业增强GPT模型微调功能

8 月 26 日消息&#xff0c;OpenAI 近日发布新闻&#xff0c;除了与Scale AI 展开深度合作外&#xff0c;OpenAI 还宣布他们计划扩展GPT系列的大语言模型。通过与Scale AI 的合作&#xff0c;OpenAI 能够在企业环境中定制GPT-3.5 Turbo和即将发布的GPT-4&#xff0c;以满足不同…