【Python机器学习】实验15 将Lenet5应用于Cifar10数据集(PyTorch实现)

news2024/11/14 3:06:08

文章目录

  • CIFAR10数据集介绍
    • 1. 数据的下载
    • 2.修改模型与前面的参数设置保持一致
    • 3. 新建模型
    • 4. 从数据集中分批量读取数据
    • 5. 定义损失函数
    • 6. 定义优化器
    • 7. 开始训练
    • 8.测试模型
    • 9. 手写体图片的可视化
    • 10. 多幅图片的可视化
  • 思考题
      • 11. 读取测试集的图片预测值(神经网络的输出为10)
      • 12. 采用pandas可视化数据
      • 13. 对预测错误的样本点进行可视化
      • 14. 看看错误样本被预测为哪些数据?
      • 15.输出错误的模型类别

CIFAR10数据集介绍

CIFAR-10 数据集由10个类别的60000张32x32彩色图像组成,每类6000张图像。有50000张训练图像和10000张测试图像。数据集分为五个训练批次
和一个测试批次,每个批次有10000张图像。测试批次包含从每个类别中随机选择的1000张图像。训练批次包含随机顺序的剩余图像,但一些训练批次
可能包含比另一个类别更多的图像。在它们之间训练批次包含来自每个类的5000张图像。以下是数据集中的类,以及每个类中的10张随机图像:
1

因为CIFAR10数据集颜色通道有3个,所以卷积层L1的输入通道数量(in_channels)需要设为3。全连接层fc1的输入维度设为400,这与上例设为256有所不同,原因是初始输入数据的形状不一样,经过卷积池化后,输出的数据形状是不一样的。如果是采用动态图开发模型,那么有一种便捷的方式查看中间结果的形状,即在forward()方法中,用print函数把中间结果的形状打印出来。根据中间结果的形状,决定接下来各网络层的参数。
2

1. 数据的下载

import torch
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
train_dataset = CIFAR10(root="./data/CIFAR10",train=True,transform=transforms.ToTensor(),download=True)
test_dataset = CIFAR10(root="./data/CIFAR10", train=False,transform=transforms.ToTensor())
Files already downloaded and verified
train_dataset[0][0].shape
torch.Size([3, 32, 32])
train_dataset[0][1]
6

2.修改模型与前面的参数设置保持一致

from torch import nn
class Lenet5(nn.Module):
    def __init__(self):
        super(Lenet5,self).__init__()
        #1+ 32-5/(1)==28
        self.features=nn.Sequential(
        #定义第一个卷积层
        nn.Conv2d(in_channels=3,out_channels=6,kernel_size=(5,5),stride=1),
        nn.ReLU(),
        nn.AvgPool2d(kernel_size=2,stride=2),
        #定义第二个卷积层
        nn.Conv2d(in_channels=6,out_channels=16,kernel_size=(5,5),stride=1),
        nn.ReLU(),
        nn.MaxPool2d(kernel_size=2,stride=2),
        )
        
        #定义全连接层
        self.classfier=nn.Sequential(nn.Linear(in_features=400,out_features=120),
        nn.ReLU(),
        nn.Linear(in_features=120,out_features=84),
        nn.ReLU(),
        nn.Linear(in_features=84,out_features=10),  
        )
        
    def forward(self,x):
        x=self.features(x)
        x=torch.flatten(x,1)
        result=self.classfier(x)
        return result    

3. 新建模型

model=Lenet5()
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model=model.to(device)

4. 从数据集中分批量读取数据

#加载数据集
batch_size=32
train_loader= torch.utils.data.DataLoader(train_dataset, batch_size, shuffle=True)
test_loader= torch.utils.data.DataLoader(test_dataset, batch_size, shuffle=False)
# 类别信息也是需要我们给定的
classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')

5. 定义损失函数

from torch import optim
loss_fun=nn.CrossEntropyLoss()
loss_lst=[]

6. 定义优化器

optimizer=optim.SGD(params=model.parameters(),lr=0.001,momentum=0.9)

7. 开始训练

import time
start_time=time.time()
#训练的迭代次数
for epoch in range(10):
    loss_i=0
    for i,(batch_data,batch_label) in enumerate(train_loader):
        #清空优化器的梯度
        optimizer.zero_grad()
        #模型前向预测
        pred=model(batch_data)
        loss=loss_fun(pred,batch_label)
        loss_i+=loss
        loss.backward()
        optimizer.step()
        if (i+1)%200==0:
            print("第%d次训练,第%d批次,损失为%.2f"%(epoch,i,loss_i/200))
            loss_i=0
end_time=time.time()
print("共训练了%d 秒"%(end_time-start_time))
第0次训练,第199批次,损失为2.30
第0次训练,第399批次,损失为2.30
第0次训练,第599批次,损失为2.30
第0次训练,第799批次,损失为2.30
第0次训练,第999批次,损失为2.30
第0次训练,第1199批次,损失为2.30
第0次训练,第1399批次,损失为2.30
第1次训练,第199批次,损失为2.30
第1次训练,第399批次,损失为2.30
第1次训练,第599批次,损失为2.30
第1次训练,第799批次,损失为2.30
第1次训练,第999批次,损失为2.29
第1次训练,第1199批次,损失为2.27
第1次训练,第1399批次,损失为2.18
第2次训练,第199批次,损失为2.07
第2次训练,第399批次,损失为2.04
第2次训练,第599批次,损失为2.03
第2次训练,第799批次,损失为2.00
第2次训练,第999批次,损失为1.98
第2次训练,第1199批次,损失为1.96
第2次训练,第1399批次,损失为1.95
第3次训练,第199批次,损失为1.89
第3次训练,第399批次,损失为1.86
第3次训练,第599批次,损失为1.84
第3次训练,第799批次,损失为1.80
第3次训练,第999批次,损失为1.75
第3次训练,第1199批次,损失为1.71
第3次训练,第1399批次,损失为1.71
第4次训练,第199批次,损失为1.66
第4次训练,第399批次,损失为1.65
第4次训练,第599批次,损失为1.63
第4次训练,第799批次,损失为1.61
第4次训练,第999批次,损失为1.62
第4次训练,第1199批次,损失为1.60
第4次训练,第1399批次,损失为1.59
第5次训练,第199批次,损失为1.56
第5次训练,第399批次,损失为1.56
第5次训练,第599批次,损失为1.54
第5次训练,第799批次,损失为1.55
第5次训练,第999批次,损失为1.52
第5次训练,第1199批次,损失为1.52
第5次训练,第1399批次,损失为1.49
第6次训练,第199批次,损失为1.50
第6次训练,第399批次,损失为1.47
第6次训练,第599批次,损失为1.46
第6次训练,第799批次,损失为1.47
第6次训练,第999批次,损失为1.46
第6次训练,第1199批次,损失为1.43
第6次训练,第1399批次,损失为1.45
第7次训练,第199批次,损失为1.42
第7次训练,第399批次,损失为1.42
第7次训练,第599批次,损失为1.39
第7次训练,第799批次,损失为1.39
第7次训练,第999批次,损失为1.40
第7次训练,第1199批次,损失为1.40
第7次训练,第1399批次,损失为1.40
第8次训练,第199批次,损失为1.36
第8次训练,第399批次,损失为1.37
第8次训练,第599批次,损失为1.38
第8次训练,第799批次,损失为1.37
第8次训练,第999批次,损失为1.34
第8次训练,第1199批次,损失为1.37
第8次训练,第1399批次,损失为1.35
第9次训练,第199批次,损失为1.31
第9次训练,第399批次,损失为1.31
第9次训练,第599批次,损失为1.31
第9次训练,第799批次,损失为1.31
第9次训练,第999批次,损失为1.34
第9次训练,第1199批次,损失为1.32
第9次训练,第1399批次,损失为1.31
共训练了156 秒

8.测试模型

len(test_dataset)
10000
correct=0
for batch_data,batch_label in test_loader:
    pred_test=model(batch_data)
    pred_result=torch.max(pred_test.data,1)[1]
    correct+=(pred_result==batch_label).sum()
print("准确率为:%.2f%%"%(correct/len(test_dataset)))
准确率为:0.53%

9. 手写体图片的可视化

from torchvision import transforms as T
import torch
len(train_dataset)
50000
train_dataset[0][0].shape
torch.Size([3, 32, 32])
import matplotlib.pyplot as plt
plt.imshow(train_dataset[0][0][0],cmap="gray")
plt.axis('off')
(-0.5, 31.5, 31.5, -0.5)

3

plt.imshow(train_dataset[0][0][0])
plt.axis('off')
(-0.5, 31.5, 31.5, -0.5)

4

10. 多幅图片的可视化

from matplotlib import pyplot as plt
plt.figure(figsize=(20,15))
cols=10
rows=10
for i in range(0,rows):
    for j in range(0,cols):
        idx=j+i*cols
        plt.subplot(rows,cols,idx+1) 
        plt.imshow(train_dataset[idx][0][0])
        plt.axis('off')

5

import numpy as np
img10 = np.stack(list(train_dataset[i][0][0] for i in range(10)), axis=1).reshape(32,320)
plt.imshow(img10)
plt.axis('off')
(-0.5, 319.5, 31.5, -0.5)

7

img100 = np.stack( 
            tuple( np.stack(
                tuple( train_dataset[j*10+i][0][0] for i in range(10) ), 
                axis=1).reshape(32,320) for j in range(10)),
            axis=0).reshape(320,320)
plt.imshow(img100)
plt.axis('off')
(-0.5, 319.5, 319.5, -0.5)

8

思考题

  • 测试集中有哪些识别错误的手写数字图片? 汇集整理并分析原因?

11. 读取测试集的图片预测值(神经网络的输出为10)

pre_result=torch.zeros(len(test_dataset),10)
for i in range(len(test_dataset)):
    pre_result[i,:]=model(torch.reshape(test_dataset[i][0],(-1,3,32,32)))
pre_result    
tensor([[-0.4934, -1.0982,  0.4072,  ..., -0.4038, -1.1655, -0.8201],
        [ 4.0154,  4.4736, -0.2921,  ..., -2.3925,  4.3176,  4.1910],
        [ 1.3858,  3.2022, -0.7004,  ..., -2.2767,  3.0923,  2.3740],
        ...,
        [-1.9551, -3.8085,  1.7917,  ...,  2.1104, -2.9573, -1.7387],
        [ 0.6681, -0.5328,  0.3059,  ...,  0.1170, -2.5236, -0.5746],
        [-0.5194, -2.6185,  1.1929,  ...,  3.7749, -2.3134, -1.5123]],
       grad_fn=<CopySlices>)
pre_result.shape
torch.Size([10000, 10])
pre_result[:5]
tensor([[-0.4934, -1.0982,  0.4072,  1.7331, -0.4456,  1.6433,  0.1721, -0.4038,
         -1.1655, -0.8201],
        [ 4.0154,  4.4736, -0.2921, -3.2882, -1.6234, -4.4814, -3.1241, -2.3925,
          4.3176,  4.1910],
        [ 1.3858,  3.2022, -0.7004, -1.0123, -1.7394, -1.6657, -3.2578, -2.2767,
          3.0923,  2.3740],
        [ 2.1151,  0.8262,  0.0071, -1.1410, -0.3051, -2.0239, -2.3023, -0.3573,
          2.9400,  0.5595],
        [-2.3524, -2.7907,  1.9834,  2.1088,  2.7645,  1.1118,  2.9782, -0.3876,
         -3.2325, -2.3916]], grad_fn=<SliceBackward0>)
#显示这10000张图片的标签
label_10000=[test_dataset[i][1] for i in range(10000)]
label_10000
[3,
 8,
 8,
 0,
 6,
 6,
 1,
 6,
 3,
 1,
 0,
 9,
 5,
 7,
 9,
 8,
 5,
 7,
 8,
 6,
 7,
 0,
 4,
 9,
 5,
 2,
 4,
 0,
 9,
 6,
 6,
 5,
 4,
 5,
 9,
 2,
 4,
 1,
 9,
 5,
 4,
 6,
 5,
 6,
 0,
 9,
 3,
 9,
 7,
 6,
 9,
 8,
 0,
 3,
 8,
 8,
 7,
 7,
 4,
 6,
 7,
 3,
 6,
 3,
 6,
 2,
 1,
 2,
 3,
 7,
 2,
 6,
 8,
 8,
 0,
 2,
 9,
 3,
 3,
 8,
 8,
 1,
 1,
 7,
 2,
 5,
 2,
 7,
 8,
 9,
 0,
 3,
 8,
 6,
 4,
 6,
 6,
 0,
 0,
 7,
 4,
 5,
 6,
 3,
 1,
 1,
 3,
 6,
 8,
 7,
 4,
 0,
 6,
 2,
 1,
 3,
 0,
 4,
 2,
 7,
 8,
 3,
 1,
 2,
 8,
 0,
 8,
 3,
 5,
 2,
 4,
 1,
 8,
 9,
 1,
 2,
 9,
 7,
 2,
 9,
 6,
 5,
 6,
 3,
 8,
 7,
 6,
 2,
 5,
 2,
 8,
 9,
 6,
 0,
 0,
 5,
 2,
 9,
 5,
 4,
 2,
 1,
 6,
 6,
 8,
 4,
 8,
 4,
 5,
 0,
 9,
 9,
 9,
 8,
 9,
 9,
 3,
 7,
 5,
 0,
 0,
 5,
 2,
 2,
 3,
 8,
 6,
 3,
 4,
 0,
 5,
 8,
 0,
 1,
 7,
 2,
 8,
 8,
 7,
 8,
 5,
 1,
 8,
 7,
 1,
 3,
 0,
 5,
 7,
 9,
 7,
 4,
 5,
 9,
 8,
 0,
 7,
 9,
 8,
 2,
 7,
 6,
 9,
 4,
 3,
 9,
 6,
 4,
 7,
 6,
 5,
 1,
 5,
 8,
 8,
 0,
 4,
 0,
 5,
 5,
 1,
 1,
 8,
 9,
 0,
 3,
 1,
 9,
 2,
 2,
 5,
 3,
 9,
 9,
 4,
 0,
 3,
 0,
 0,
 9,
 8,
 1,
 5,
 7,
 0,
 8,
 2,
 4,
 7,
 0,
 2,
 3,
 6,
 3,
 8,
 5,
 0,
 3,
 4,
 3,
 9,
 0,
 6,
 1,
 0,
 9,
 1,
 0,
 7,
 9,
 1,
 2,
 6,
 9,
 3,
 4,
 6,
 0,
 0,
 6,
 6,
 6,
 3,
 2,
 6,
 1,
 8,
 2,
 1,
 6,
 8,
 6,
 8,
 0,
 4,
 0,
 7,
 7,
 5,
 5,
 3,
 5,
 2,
 3,
 4,
 1,
 7,
 5,
 4,
 6,
 1,
 9,
 3,
 6,
 6,
 9,
 3,
 8,
 0,
 7,
 2,
 6,
 2,
 5,
 8,
 5,
 4,
 6,
 8,
 9,
 9,
 1,
 0,
 2,
 2,
 7,
 3,
 2,
 8,
 0,
 9,
 5,
 8,
 1,
 9,
 4,
 1,
 3,
 8,
 1,
 4,
 7,
 9,
 4,
 2,
 7,
 0,
 7,
 0,
 6,
 6,
 9,
 0,
 9,
 2,
 8,
 7,
 2,
 2,
 5,
 1,
 2,
 6,
 2,
 9,
 6,
 2,
 3,
 0,
 3,
 9,
 8,
 7,
 8,
 8,
 4,
 0,
 1,
 8,
 2,
 7,
 9,
 3,
 6,
 1,
 9,
 0,
 7,
 3,
 7,
 4,
 5,
 0,
 0,
 2,
 9,
 3,
 4,
 0,
 6,
 2,
 5,
 3,
 7,
 3,
 7,
 2,
 5,
 3,
 1,
 1,
 4,
 9,
 9,
 5,
 7,
 5,
 0,
 2,
 2,
 2,
 9,
 7,
 3,
 9,
 4,
 3,
 5,
 4,
 6,
 5,
 6,
 1,
 4,
 3,
 4,
 4,
 3,
 7,
 8,
 3,
 7,
 8,
 0,
 5,
 7,
 6,
 0,
 5,
 4,
 8,
 6,
 8,
 5,
 5,
 9,
 9,
 9,
 5,
 0,
 1,
 0,
 8,
 1,
 1,
 8,
 0,
 2,
 2,
 0,
 4,
 6,
 5,
 4,
 9,
 4,
 7,
 9,
 9,
 4,
 5,
 6,
 6,
 1,
 5,
 3,
 8,
 9,
 5,
 8,
 5,
 7,
 0,
 7,
 0,
 5,
 0,
 0,
 4,
 6,
 9,
 0,
 9,
 5,
 6,
 6,
 6,
 2,
 9,
 0,
 1,
 7,
 6,
 7,
 5,
 9,
 1,
 6,
 2,
 5,
 5,
 5,
 8,
 5,
 9,
 4,
 6,
 4,
 3,
 2,
 0,
 7,
 6,
 2,
 2,
 3,
 9,
 7,
 9,
 2,
 6,
 7,
 1,
 3,
 6,
 6,
 8,
 9,
 7,
 5,
 4,
 0,
 8,
 4,
 0,
 9,
 3,
 4,
 8,
 9,
 6,
 9,
 2,
 6,
 1,
 4,
 7,
 3,
 5,
 3,
 8,
 5,
 0,
 2,
 1,
 6,
 4,
 3,
 3,
 9,
 6,
 9,
 8,
 8,
 5,
 8,
 6,
 6,
 2,
 1,
 7,
 7,
 1,
 2,
 7,
 9,
 9,
 4,
 4,
 1,
 2,
 5,
 6,
 8,
 7,
 6,
 8,
 3,
 0,
 5,
 5,
 3,
 0,
 7,
 9,
 1,
 3,
 4,
 4,
 5,
 3,
 9,
 5,
 6,
 9,
 2,
 1,
 1,
 4,
 1,
 9,
 4,
 7,
 6,
 3,
 8,
 9,
 0,
 1,
 3,
 6,
 3,
 6,
 3,
 2,
 0,
 3,
 1,
 0,
 5,
 9,
 6,
 4,
 8,
 9,
 6,
 9,
 6,
 3,
 0,
 3,
 2,
 2,
 7,
 8,
 3,
 8,
 2,
 7,
 5,
 7,
 2,
 4,
 8,
 7,
 4,
 2,
 9,
 8,
 8,
 6,
 8,
 8,
 7,
 4,
 3,
 3,
 8,
 4,
 9,
 4,
 8,
 8,
 1,
 8,
 2,
 1,
 3,
 6,
 5,
 4,
 2,
 7,
 9,
 9,
 4,
 1,
 4,
 1,
 3,
 2,
 7,
 0,
 7,
 9,
 7,
 6,
 6,
 2,
 5,
 9,
 2,
 9,
 1,
 2,
 2,
 6,
 8,
 2,
 1,
 3,
 6,
 6,
 0,
 1,
 2,
 7,
 0,
 5,
 4,
 6,
 1,
 6,
 4,
 0,
 2,
 2,
 6,
 0,
 5,
 9,
 1,
 7,
 6,
 7,
 0,
 3,
 9,
 6,
 8,
 3,
 0,
 3,
 4,
 7,
 7,
 1,
 4,
 7,
 2,
 7,
 1,
 4,
 7,
 4,
 4,
 8,
 4,
 7,
 7,
 5,
 3,
 7,
 2,
 0,
 8,
 9,
 5,
 8,
 3,
 6,
 2,
 0,
 8,
 7,
 3,
 7,
 6,
 5,
 3,
 1,
 3,
 2,
 2,
 5,
 4,
 1,
 2,
 9,
 2,
 7,
 0,
 7,
 2,
 1,
 3,
 2,
 0,
 2,
 4,
 7,
 9,
 8,
 9,
 0,
 7,
 7,
 0,
 7,
 8,
 4,
 6,
 3,
 3,
 0,
 1,
 3,
 7,
 0,
 1,
 3,
 1,
 4,
 2,
 3,
 8,
 4,
 2,
 3,
 7,
 8,
 4,
 3,
 0,
 9,
 0,
 0,
 1,
 0,
 4,
 4,
 6,
 7,
 6,
 1,
 1,
 3,
 7,
 3,
 5,
 2,
 6,
 6,
 5,
 8,
 7,
 1,
 6,
 8,
 8,
 5,
 3,
 0,
 4,
 0,
 1,
 3,
 8,
 8,
 0,
 6,
 9,
 9,
 9,
 5,
 5,
 8,
 6,
 0,
 0,
 4,
 2,
 3,
 2,
 7,
 2,
 2,
 5,
 9,
 8,
 9,
 1,
 7,
 4,
 0,
 3,
 0,
 1,
 3,
 8,
 3,
 9,
 6,
 1,
 4,
 7,
 0,
 3,
 7,
 8,
 9,
 1,
 1,
 6,
 6,
 6,
 6,
 9,
 1,
 9,
 9,
 4,
 2,
 1,
 7,
 0,
 6,
 8,
 1,
 9,
 2,
 9,
 0,
 4,
 7,
 8,
 3,
 1,
 2,
 0,
 1,
 5,
 8,
 4,
 6,
 3,
 8,
 1,
 3,
 8,
 ...]
import numpy
pre_10000=pre_result.detach()
pre_10000
tensor([[-0.4934, -1.0982,  0.4072,  ..., -0.4038, -1.1655, -0.8201],
        [ 4.0154,  4.4736, -0.2921,  ..., -2.3925,  4.3176,  4.1910],
        [ 1.3858,  3.2022, -0.7004,  ..., -2.2767,  3.0923,  2.3740],
        ...,
        [-1.9551, -3.8085,  1.7917,  ...,  2.1104, -2.9573, -1.7387],
        [ 0.6681, -0.5328,  0.3059,  ...,  0.1170, -2.5236, -0.5746],
        [-0.5194, -2.6185,  1.1929,  ...,  3.7749, -2.3134, -1.5123]])
pre_10000=numpy.array(pre_10000)
pre_10000
array([[-0.49338394, -1.098238  ,  0.40724754, ..., -0.40375623,
        -1.165497  , -0.820113  ],
       [ 4.0153656 ,  4.4736323 , -0.29209492, ..., -2.392501  ,
         4.317573  ,  4.190993  ],
       [ 1.3858219 ,  3.2021556 , -0.70040375, ..., -2.2767155 ,
         3.092283  ,  2.373978  ],
       ...,
       [-1.9550545 , -3.808494  ,  1.7917161 , ...,  2.110389  ,
        -2.9572597 , -1.7386926 ],
       [ 0.66809845, -0.5327946 ,  0.30590305, ...,  0.11701592,
        -2.5236375 , -0.5746133 ],
       [-0.51935434, -2.6184506 ,  1.1929085 , ...,  3.7748828 ,
        -2.3134274 , -1.5123445 ]], dtype=float32)

12. 采用pandas可视化数据

import pandas as pd 
table=pd.DataFrame(zip(pre_10000,label_10000))
table
01
0[-0.49338394, -1.098238, 0.40724754, 1.7330961...3
1[4.0153656, 4.4736323, -0.29209492, -3.2882178...8
2[1.3858219, 3.2021556, -0.70040375, -1.0123051...8
3[2.11508, 0.82618773, 0.007076204, -1.1409527,...0
4[-2.352432, -2.7906854, 1.9833877, 2.1087575, ...6
.........
9995[-0.55809855, -4.3891077, -0.3040389, 3.001731...8
9996[-2.7151718, -4.1596007, 1.2393914, 2.8491826,...3
9997[-1.9550545, -3.808494, 1.7917161, 2.6365147, ...5
9998[0.66809845, -0.5327946, 0.30590305, -0.182045...1
9999[-0.51935434, -2.6184506, 1.1929085, 0.1288419...7

10000 rows × 2 columns

table[0].values
array([array([-0.49338394, -1.098238  ,  0.40724754,  1.7330961 , -0.4455951 ,
               1.6433077 ,  0.1720748 , -0.40375623, -1.165497  , -0.820113  ],
             dtype=float32)                                                    ,
       array([ 4.0153656 ,  4.4736323 , -0.29209492, -3.2882178 , -1.6234205 ,
              -4.481386  , -3.1240807 , -2.392501  ,  4.317573  ,  4.190993  ],
             dtype=float32)                                                    ,
       array([ 1.3858219 ,  3.2021556 , -0.70040375, -1.0123051 , -1.7393746 ,
              -1.6656632 , -3.2578242 , -2.2767155 ,  3.092283  ,  2.373978  ],
             dtype=float32)                                                    ,
       ...,
       array([-1.9550545 , -3.808494  ,  1.7917161 ,  2.6365147 ,  0.37311587,
               3.545672  , -0.43889195,  2.110389  , -2.9572597 , -1.7386926 ],
             dtype=float32)                                                    ,
       array([ 0.66809845, -0.5327946 ,  0.30590305, -0.18204585,  2.0045712 ,
               0.47369143, -0.3122899 ,  0.11701592, -2.5236375 , -0.5746133 ],
             dtype=float32)                                                    ,
       array([-0.51935434, -2.6184506 ,  1.1929085 ,  0.1288419 ,  1.8770852 ,
               0.4296908 , -0.22015049,  3.7748828 , -2.3134274 , -1.5123445 ],
             dtype=float32)                                                    ],
      dtype=object)
table["pred"]=[np.argmax(table[0][i]) for i in range(table.shape[0])]
table
01pred
0[-0.49338394, -1.098238, 0.40724754, 1.7330961...33
1[4.0153656, 4.4736323, -0.29209492, -3.2882178...81
2[1.3858219, 3.2021556, -0.70040375, -1.0123051...81
3[2.11508, 0.82618773, 0.007076204, -1.1409527,...08
4[-2.352432, -2.7906854, 1.9833877, 2.1087575, ...66
............
9995[-0.55809855, -4.3891077, -0.3040389, 3.001731...85
9996[-2.7151718, -4.1596007, 1.2393914, 2.8491826,...33
9997[-1.9550545, -3.808494, 1.7917161, 2.6365147, ...55
9998[0.66809845, -0.5327946, 0.30590305, -0.182045...14
9999[-0.51935434, -2.6184506, 1.1929085, 0.1288419...77

10000 rows × 3 columns

13. 对预测错误的样本点进行可视化

mismatch=table[table[1]!=table["pred"]]
mismatch
01pred
1[4.0153656, 4.4736323, -0.29209492, -3.2882178...81
2[1.3858219, 3.2021556, -0.70040375, -1.0123051...81
3[2.11508, 0.82618773, 0.007076204, -1.1409527,...08
8[0.02641207, -3.6653092, 2.294829, 2.2884543, ...35
12[-1.4556388, -1.7955011, -0.6100754, 1.169481,...56
............
9989[-0.2553262, -2.8777533, 3.4579017, 0.3079242,...24
9993[-0.077826336, -3.14616, 0.8994149, 3.5604722,...53
9994[-1.2543154, -2.4472265, 0.6754027, 2.0582433,...36
9995[-0.55809855, -4.3891077, -0.3040389, 3.001731...85
9998[0.66809845, -0.5327946, 0.30590305, -0.182045...14

4657 rows × 3 columns

from matplotlib import pyplot as plt
plt.scatter(mismatch[1],mismatch["pred"])
<matplotlib.collections.PathCollection at 0x1b3a92ef910>

9

14. 看看错误样本被预测为哪些数据?

mismatch[mismatch[1]==9].sort_values("pred").index
Int64Index([2129, 1465, 2907,  787, 2902, 2307, 4588, 5737, 8276, 8225,
            ...
            7635, 7553, 7526, 3999, 1626, 1639, 4193, 7198, 3957, 3344],
           dtype='int64', length=396)
idx_lst=mismatch[mismatch[1]==9].sort_values("pred").index.values
idx_lst,len(idx_lst)
(array([2129, 1465, 2907,  787, 2902, 2307, 4588, 5737, 8276, 8225, 8148,
        4836, 1155, 7218, 8034, 7412, 5069, 1629, 5094, 5109, 7685, 5397,
        1427, 5308, 8727, 2960, 2491, 6795, 1997, 6686, 9449, 6545, 8985,
        9401, 3564, 6034,  383, 9583, 9673,  507, 3288, 6868, 9133, 9085,
         577, 4261, 6974,  411, 6290, 5416, 5350, 5950, 5455, 5498, 6143,
        5964, 5864, 5877, 6188, 5939,   14, 5300, 3501, 3676, 3770, 3800,
        3850, 3893, 3902, 4233, 4252, 4253, 4276, 5335, 4297, 4418, 4445,
        4536, 4681, 6381, 4929, 4945, 5067, 5087, 5166, 5192, 4364, 4928,
        7024, 6542, 8144, 8312, 8385, 8406, 8453, 8465, 8521, 8585, 8673,
        8763, 8946, 9067, 9069, 9199, 9209, 9217, 9280, 9403, 9463, 9518,
        9692, 9743, 9871, 9875, 9881, 8066, 6509, 8057, 7826, 6741, 6811,
        6814, 6840, 6983, 7007, 3492, 7028, 7075, 7121, 7232, 7270, 7424,
        7431, 7444, 7492, 7499, 7501, 7578, 7639, 7729, 7767, 7792, 7818,
        7824, 7942, 3459, 4872, 1834, 1487, 1668, 1727, 1732, 1734, 1808,
        1814, 1815, 1831, 1927, 2111, 2126, 2190, 2246, 2290, 2433, 2596,
        2700, 2714, 1439, 1424, 1376, 1359,   28,  151,  172,  253,  259,
         335,  350,  591,  625, 2754,  734,  940,  951,  970, 1066, 1136,
        1177, 1199, 1222, 1231,  853, 2789, 9958, 2946, 3314, 3307, 2876,
        3208, 3166, 2944, 2817, 2305, 7522, 7155, 7220, 4590, 2899, 2446,
        2186, 7799, 9492, 3163, 4449, 2027, 2387, 1064, 3557, 2177,  654,
        9791, 2670, 2514, 2495, 3450, 8972, 3210, 3755, 2756, 7967, 3970,
        4550, 6017,  938,  744, 6951, 3397, 4852, 3133, 7931,  707, 3312,
        7470, 6871, 8292, 7100, 9529, 9100, 3853, 9060, 9732, 2521, 3789,
        2974, 5311, 3218, 5736, 3055, 7076, 1220, 9147, 1344,  532, 8218,
        3569, 1008, 8475, 8877, 1582, 8936, 4758, 1837, 9517,  252, 5832,
        1916, 6369, 4979, 9324, 6218, 9777, 7923, 4521, 2868,  213, 8083,
        5952, 5579, 4508, 5488, 2460, 5332, 5180, 8323, 8345, 3776, 2568,
        5151, 4570, 2854, 8488, 4874,  680, 2810, 1285, 6136, 3339, 9143,
        6852, 1906, 7067, 7073, 2975, 1924, 6804, 6755, 9299, 2019, 9445,
        9560,  360, 1601, 7297, 9122, 6377, 9214, 6167, 3980,  394, 7491,
        7581, 9349, 8953,  222,  139,  530, 3577, 9868,  247, 9099, 9026,
         209,  538, 3229, 9258,  585, 9204, 9643, 1492, 3609, 6570, 6561,
        6469, 6435, 6419, 2155, 6275, 4481, 2202, 1987, 2271, 2355, 2366,
        2432, 5400, 2497, 2727, 4931, 4619, 9884, 5902, 8796, 6848, 6960,
        8575, 8413,  981, 8272, 8145, 3172, 1221, 3168, 1256, 1889, 1291,
        3964, 7635, 7553, 7526, 3999, 1626, 1639, 4193, 7198, 3957, 3344],
       dtype=int64),
 396)
import numpy as np
img=np.stack(list(test_dataset[idx_lst[i]][0][0] for i in range(5)),axis=1).reshape(32,32*5)
plt.imshow(img)
plt.axis('off')
(-0.5, 159.5, 31.5, -0.5)

10

#显示4行
import numpy as np
img20=np.stack(
    tuple(np.stack(
            tuple(test_dataset[idx_lst[i+j*5]][0][0] for i in range(5)),
        axis=1).reshape(32,32*5) for j in range(4)),axis=0).reshape(32*4,32*5)
plt.imshow(img20)
plt.axis('off')
(-0.5, 159.5, 127.5, -0.5)

11

15.输出错误的模型类别

idx_lst=mismatch[mismatch[1]==9].index.values
table.iloc[idx_lst[:], 2].values
array([1, 1, 8, 1, 1, 8, 7, 8, 8, 6, 1, 1, 1, 1, 7, 0, 7, 0, 0, 8, 6, 8,
       0, 8, 1, 1, 3, 7, 5, 1, 4, 0, 1, 4, 1, 1, 1, 8, 6, 3, 1, 1, 0, 1,
       1, 6, 8, 1, 1, 8, 7, 8, 6, 1, 1, 1, 0, 1, 0, 1, 8, 6, 7, 8, 0, 8,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 8, 7, 6, 7, 1, 8, 0, 7, 3, 1, 1, 0,
       8, 3, 3, 1, 8, 1, 8, 1, 2, 0, 8, 8, 3, 8, 1, 3, 7, 0, 3, 8, 3, 5,
       7, 1, 3, 1, 1, 8, 1, 3, 1, 7, 1, 7, 7, 1, 3, 0, 0, 1, 1, 0, 5, 7,
       6, 4, 3, 1, 8, 8, 1, 3, 5, 8, 0, 1, 5, 1, 7, 8, 4, 3, 1, 1, 1, 3,
       0, 6, 8, 8, 1, 3, 1, 7, 5, 1, 1, 5, 1, 1, 8, 8, 4, 7, 8, 8, 1, 1,
       1, 0, 1, 1, 1, 1, 1, 3, 8, 7, 7, 1, 4, 7, 0, 2, 8, 1, 6, 0, 4, 1,
       7, 1, 1, 8, 1, 6, 1, 0, 1, 0, 0, 7, 1, 7, 1, 1, 0, 5, 7, 1, 1, 0,
       8, 1, 1, 7, 1, 7, 5, 0, 6, 1, 1, 8, 1, 1, 7, 1, 4, 0, 7, 1, 7, 1,
       6, 8, 1, 6, 7, 1, 8, 8, 8, 1, 1, 0, 8, 8, 0, 1, 7, 0, 7, 1, 1, 1,
       8, 7, 0, 5, 4, 8, 0, 1, 1, 1, 1, 7, 7, 1, 6, 5, 1, 2, 8, 0, 2, 1,
       1, 7, 0, 1, 1, 1, 5, 7, 1, 1, 1, 2, 8, 8, 1, 7, 8, 1, 0, 1, 1, 1,
       3, 1, 1, 1, 7, 4, 1, 4, 0, 1, 1, 7, 1, 8, 0, 6, 0, 8, 0, 5, 1, 7,
       7, 1, 1, 8, 1, 1, 6, 7, 1, 8, 1, 1, 0, 1, 8, 6, 6, 1, 8, 3, 0, 8,
       5, 1, 1, 0, 8, 5, 7, 0, 7, 6, 1, 8, 1, 7, 1, 8, 1, 7, 6, 8, 0, 1,
       7, 0, 1, 3, 6, 1, 5, 7, 0, 8, 0, 1, 5, 1, 6, 3, 8, 1, 1, 1, 8, 1],
      dtype=int64)
arr2=table.iloc[idx_lst[:], 2].values
print('错误模型共' + str(len(arr2)) + '个')
for i in range(33):
    for j in range(12):
        print(classes[arr2[j+i*12]],end=" ")
    print()
错误模型共396个
car car ship car car ship horse ship ship frog car car 
car car horse plane horse plane plane ship frog ship plane ship 
car car cat horse dog car deer plane car deer car car 
car ship frog cat car car plane car car frog ship car 
car ship horse ship frog car car car plane car plane car 
ship frog horse ship plane ship car car car car car car 
car car car frog ship horse frog horse car ship plane horse 
cat car car plane ship cat cat car ship car ship car 
bird plane ship ship cat ship car cat horse plane cat ship 
cat dog horse car cat car car ship car cat car horse 
car horse horse car cat plane plane car car plane dog horse 
frog deer cat car ship ship car cat dog ship plane car 
dog car horse ship deer cat car car car cat plane frog 
ship ship car cat car horse dog car car dog car car 
ship ship deer horse ship ship car car car plane car car 
car car car cat ship horse horse car deer horse plane bird 
ship car frog plane deer car horse car car ship car frog 
car plane car plane plane horse car horse car car plane dog 
horse car car plane ship car car horse car horse dog plane 
frog car car ship car car horse car deer plane horse car 
horse car frog ship car frog horse car ship ship ship car 
car plane ship ship plane car horse plane horse car car car 
ship horse plane dog deer ship plane car car car car horse 
horse car frog dog car bird ship plane bird car car horse 
plane car car car dog horse car car car bird ship ship 
car horse ship car plane car car car cat car car car 
horse deer car deer plane car car horse car ship plane frog 
plane ship plane dog car horse horse car car ship car car 
frog horse car ship car car plane car ship frog frog car 
ship cat plane ship dog car car plane ship dog horse plane 
horse frog car ship car horse car ship car horse frog ship 
plane car horse plane car cat frog car dog horse plane ship 
plane car dog car frog cat ship car car car ship car 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/908517.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux系统编程:进程信号的保存和阻塞

目录 一. 信号保存和阻塞的相关概念 二. 进程信号的表示 2.1 进程信号在内核中的表示 2.2 sigset_t 类型 三. 信号集操作相关函数 3.1 sigset_t 类型参数设置相关函数 3.2 sigprocmask 函数 3.3 sigpending 函数 四. 演示代码 4.1 将所有信号的处理方式都注册为不退出…

详解Spring的循环依赖问题、三级缓存解决方案源码分析

0、基础&#xff1a;Bean的生命周期 在Spring中&#xff0c;由于IOC的控制反转&#xff0c;创建对象不再是简单的new出来&#xff0c;而是交给Spring去创建&#xff0c;会经历一系列Bean的生命周期才创建出相应的对象。而循环依赖问题也是由Bean的生命周期过程导致的问题&#…

wustojc3010快速求和

#include <stdio.h> int main() {int n;double s;s0;scanf("%d",&n);for(int i1;i<n;i){ss(double)1.0/(i*(i1.0));//强转一下类型}printf("%.5lf",s);return 0;}

Docker私有仓库创建

1.Docker私有仓库搭建 拉取私有仓库镜像并启动私有仓库容器。 访问私有仓库容器&#xff0c;表明私有仓库搭建成功。 此时私有仓库就已经搭建完成了。 2.将本机的镜像传到私有仓库 3.将私有仓库镜像拉取到本地

论文导读|European Journal of Operational Research近期文章精选:旅行商问题专题

推文作者&#xff1a;王松阁 编者按 在“European Journal of Operational Research近期论文精选”中&#xff0c;我们有主题、有针对性地选择了European Journal of Operational Research中一些有趣的文章&#xff0c;不仅对文章的内容进行了概括与点评&#xff0c;而且也对文…

DHCP协议原理与应用

DHCP协议原理与应用 一、DHCP协议概述1.1、场景描述1.1.1、场景描述11.1.2、场景描述21.1.3、场景描述3 二、DHCP协议工作原理2.1、DHCP简介2.2、DHCP协议名词解释2.3、DHCP服务器配置2.4、PC的DHCP设置2.5、DHCP协议工作过程2.6、DHCP协议报文及用途2.7、DHCP报文介绍2.7.1、D…

面试之快速学习STL-迭代适配器

先放一张大图 参考&#xff1a;http://c.biancheng.net/view/7255.html 1. 反向迭代器 例子&#xff1a; std::list<int> values{1,2,3,4,5};auto start_it values.rbegin();const auto end_it values.rend();//start_it end_it std::reverse_iterator<std::lis…

HCIP 三层架构实验

三层架构实验 拓扑和思路拓扑思路LSW配置LSW1LSW2LSW3 DHCPLSW2LSW1 ACL外网冗余 拓扑和思路 拓扑 思路 首先划分网段&#xff0c;然后LSW1和LSW2和R1可以用ospf宣告就行&#xff0c;然后R1写条缺省指向R2 然后可以将LSW1和LSW2三合一&#xff0c;给交换机配置换分组&#x…

用电脑软件0代码设计WS2812显示效果(含软件下载地址)

用电脑软件设计WS2812显示效果 ws2812显示效果设计软件和单片机程序文件 单片机型号为8脚的STC8G1K08A或STC8G1K17A或者16脚的STC8G1K08或STC8G1K17 烧录时晶振选择22.1184M 百度网盘下载地址&#xff1a;链接: https://pan.baidu.com/s/1cVvA604IKtZ-cIqTX8Jgzw?pwd1234 提取…

数学分析:体形式

确实&#xff0c;面积应该是没有正负的&#xff0c;或者说和曲面的定向应该是无关的。我们用微分形式的积分定义了具有参数形式的曲面的面积。所以这个意思就是说&#xff0c;对于不同的曲面的定向&#xff0c;微分形式应该也不同。 这就是体形式的具体样子&#xff0c;得到每…

中科大 Epc 综合英语经验贴

免修规定考试形式1. 听力&#xff08;813131320分&#xff09;2. 单词&#xff08;20120分&#xff09;3. 语法结构&#xff08;10110分&#xff09;4. 阅读&#xff08;5篇&#xff0c;每题两分&#xff0c;52550分&#xff09; 机考答题建议 免修规定 研究生英语课免修规定&…

已解决Gradle错误:“Unable to load class ‘org.gradle.api.plugins.MavenPlugin‘”

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

<指针进阶>指针数组和数组指针傻傻分不清?

✨Blog&#xff1a;&#x1f970;不会敲代码的小张:)&#x1f970; &#x1f251;推荐专栏&#xff1a;C语言&#x1f92a;、Cpp&#x1f636;‍&#x1f32b;️、数据结构初阶&#x1f480; &#x1f4bd;座右铭&#xff1a;“記住&#xff0c;每一天都是一個新的開始&#x1…

数学建模大全及优缺点解读

分类模型 1、距离聚类&#xff08;系统聚类&#xff09;&#xff08;常用&#xff0c;需掌握&#xff09; 优点&#xff1a; ①将一批样本数据按照他们在性质上的亲密程度在没有先验知识的情况下自动进行分类 ②是一种探索性的分析方法&#xff0c;分类结果不一定相同 例如&am…

Stable Diffusion训练Lora模型

以下内容参考:https://www.bilibili.com/video/BV1Qk4y1E7nv/?spm_id_from333.337.search-card.all.click&vd_source3969f30b089463e19db0cc5e8fe4583a 1、训练Lora的2个重点步骤 第一步&#xff0c;准备训练要使用的图片&#xff0c;即优质的图片 第二部&#xff0c;为…

6.物联网LWIP之并发服务器编程

一。并发服务器&#xff08;多线程&#xff09;实现 #include "socket_udp_server.h" #include "socket_tcp_server.h" #include "socket_wrap.h" #include "ctype.h"static char ReadBuff[BUFF_SIZE];/*** brief udp 服务器任务* p…

深度学习论文: Learning Transferable Visual Models From Natural Language Supervision

深度学习论文: Learning Transferable Visual Models From Natural Language Supervision Learning Transferable Visual Models From Natural Language Supervision PDF: https://arxiv.org/pdf/2103.00020.pdf 官方代码: https://github.com/OpenAI/CLIP PyTorch代码: https:…

vector(介绍)

目录 1.vector的介绍及使用 1.1 vector的介绍 1.2 vector的使用 1.2.1 vector的定义 1.2.2 vector iterator 的使用 1.2.3 vector 空间增长问题 1.2.4 vector 增删查改 1.2.5 vector 迭代器失效问题。&#xff08;重点&#xff09; 2.vector深度剖析及模拟实现 2.1 使用…

PHP“牵手”淘宝商品评论数据采集方法,淘宝API接口申请指南

淘宝天猫商品评论数据接口 API 是开放平台提供的一种 API 接口&#xff0c;它可以帮助开发者获取商品的详细信息&#xff0c;包括商品的标题、描述、图片等信息。在电商平台的开发中&#xff0c;详情接口API是非常常用的 API&#xff0c;因此本文将详细介绍详情接口 API 的使用…

深入理解Semaphore

Semaphore&#xff08;信号量&#xff09;是操作系统中PV操作的原语在java中的实现&#xff0c;它也是基于AQS实现的。其中PV操作是操作系统中一种实现进程互斥与同步的有效方法。PV操作与信号量&#xff08;S&#xff09;的处理有关&#xff0c;P表示通过&#xff0c;V表示释放…