​​Linux 信号量​​​​

news2024/12/24 11:45:50

 


信号量的产生原因

我们将可能会被多个执行流同时访问的资源叫做临界资源,临界资源需要进行保护否则会出现数据不一致等问题。

当我们仅用一个互斥锁对临界资源进行保护时,相当于我们将这块临界资源看作一个整体,同一时刻只允许一个执行流对这块临界资源进行访问。

但实际我们可以将这块临界资源再分割为多个区域,当多个执行流需要访问临界资源时,如果这些执行流访问的是临界资源的不同区域,那么我们可以让这些执行流同时访问临界资源的不同区域,此时不会出现数据不一致等问题。

举个栗子:

假设临界资源是一块数组:

vector<int>nums(5,1)

 互斥锁的要求是只能访问这个数组nums,信息量可以允许A执行流访问nums[1];B执行流访问nums[2],只要下标是不一样的,其他执行流都可以访问数组nums。

信号量的概念

信号量又叫做信号灯,其本质是一个支持PV操作的计数器。POSIX信号量和SystemV信号量作用相同,都是用于同步操作,达到无冲突的访问共享资源目的。 但POSIX可以用于线程间同步。

信号量函数

初始化

SEM_INIT(3)                     Linux Programmer's Manual                    SEM_INIT(3)

NAME
       sem_init - initialize an unnamed semaphore

SYNOPSIS
       #include <semaphore.h>

       int sem_init(sem_t *sem, int pshared, unsigned int value);

       Link with -pthread.
参数:
pshared:0表示线程间共享,非零表示进程间共享
value:信号量初始值

销毁


NAME
       sem_destroy - destroy an unnamed semaphore

SYNOPSIS
       #include <semaphore.h>

       int sem_destroy(sem_t *sem);

       Link with -pthread.

等待

NAME
       sem_wait, sem_timedwait, sem_trywait - lock a semaphore

SYNOPSIS
       #include <semaphore.h>

       int sem_wait(sem_t *sem);

       int sem_trywait(sem_t *sem);

       int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);

       Link with -pthread.

   Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

       sem_timedwait(): _POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 600

功能:等待信号量,会将信号量的值减1

发布

NAME
       sem_post - unlock a semaphore

SYNOPSIS
       #include <semaphore.h>

       int sem_post(sem_t *sem);

       Link with -pthread.

功能:发布信号量,表示资源使用完毕,可以归还资源了。将信号量值加1。

二元信号量模拟实现互斥功能

信号量本质是一个计数器,如果将信号量的初始值设置为1,那么此时该信号量叫做二元信号量。

基于环形队列的生产消费模型

环形队列采用数组模拟,用模运算来模拟环状特性

环形结构起始状态和结束状态都是一样的,不好判断为空或者为满,所以可以通过加计数器或者标记位来 判断满或者空。另外也可以预留一个空的位置,作为满的状态

生产者和消费者申请和释放资源

空间资源和数据资源

代码上用 data_sem和space_sem分别表示数据资源和空间资源

生产者:生产者关注的是空间资源,只要环形队列中有空间,他就可以生产。

=》生产者申请空间资源,释放数据资源  

让我们来分析一下生产者具体需要做什么:

1.如果blank_sem的值不为0,则信号量申请成功,此时生产者可以进行生产操作。

2.如果blank_sem的值为0,则信号量申请失败,此时生产者需要在blank_sem的等待队列下进行阻塞等待,直到环形队列当中有新的空间后再被唤醒

消费者:消费者关注的是数据资源,只要有数据就能消费

=》消费者申请数据资源,释放空间资源

消费者有具体怎么做呢?

虽然生产者在进行生产前是对blank_sem进行的P操作,但是当生产者生产完数据,应该对data_sem进行V操作而不是blank_sem。
生产者在生产数据前申请到的是blank位置,当生产者生产完数据后,该位置当中存储的是生产者生产的数据,在该数据被消费者消费之前,该位置不再是blank位置,而应该是data位置。
当生产者生产完数据后,意味着环形队列当中多了一个data位置,因此我们应该对data_sem进行V操作。

必须遵守的两个规则

第一个规则:生产者和消费者不能对同一个位置进行访问。(这个是显然的,如果同时访问同一个位置的数据,可能会产生意外的错误)

第二个规则:无论是生产者还是消费者,都不应该将对方套一个圈以上。

(我们通过信号量适当地让消费者线程和生产者线程相互切换)

信号量保护环形队列的原理

代码实现

#include <iostream>
#include <vector>
#include <stdlib.h>
#include <semaphore.h>
#include <pthread.h>
const int NUM=16;
class RingQueue
{
public:
    RingQueue(int _cap = NUM) : q(_cap), cap(_cap)
    {
        sem_init(&data_sem, 0, 0);
        sem_init(&space_sem, 0, cap);
        consume_step = 0;
        product_step = 0;
    }
    void PutData(const int &data)
    {
        sem_wait(&space_sem); // P
        q[consume_step] = data;
        consume_step++;
        consume_step %= cap;
        sem_post(&data_sem); // V
    }
    void GetData(int &data)
    {
        sem_wait(&data_sem);
        data = q[product_step];
        product_step++;
        product_step %= cap;
        sem_post(&space_sem);
    }
    ~RingQueue()
    {
        sem_destroy(&data_sem);
        sem_destroy(&space_sem);
    }

private:
    std::vector<int> q;
    int cap;
    sem_t data_sem;
    sem_t space_sem;
    int consume_step;
    int product_step;
};
void *consumer(void *arg)
{
    RingQueue *rqp = (RingQueue *)arg;
    int data;
    while (true)
    {
        rqp->GetData(data);
        std::cout << "Consume data done : " << data << std::endl;
        sleep(1);
    }
}

void *producter(void *arg)
{
    RingQueue *rqp = (RingQueue *)arg;
    srand((unsigned long)time(NULL));
    while (true)
    {
        int data = rand() % 1024;
        rqp->PutData(data);
        std::cout << "Prodoct data done: " << data << std::endl;
        // sleep(1);
    }
}
int main()
{
    RingQueue rq;
    pthread_t c, p;
    pthread_create(&c, NULL, consumer, (void *)&rq);
    pthread_create(&p, NULL, producter, (void *)&rq);
    pthread_join(c, NULL);
    pthread_join(p, NULL);
}

更多代码实现参考

RingQueue · fortianyang/StudyForLinux - 码云 - 开源中国 (gitee.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/903562.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

WPF入门到精通:2.WPF常用控件及布局

WPF&#xff08;Windows Presentation Foundation&#xff09;是一个用于构建 Windows 应用程序的框架&#xff0c;它提供了丰富的控件和布局方式&#xff0c;帮助开发者快速构建出现代化的应用程序。 WPF常用控件 Button 控件 WPF 中最常用的控件之一。它由一个文本标签和一个…

设计模式之迭代器模式(Iterator)的C++实现

1、迭代器模式的提出 在软件开发过程中&#xff0c;操作的集合对象内部结构常常变化&#xff0c;在访问这些对象元素的同时&#xff0c;也要保证对象内部的封装性。迭代器模式提供了一种利用面向对象的遍历方法来遍历对象元素。迭代器模式通过抽象一个迭代器类&#xff0c;不同…

list使用

list的使用于string的使用都类似&#xff0c;首先通过查阅来看list有哪些函数&#xff1a; 可以看到函数还是蛮多的&#xff0c;我们值重点一些常用的和常见的&#xff1a; 1.关于push_back,push_front,和对应迭代器的使用 //关于push_back和push_front void test_list1() {l…

算法通关村——字符串反转问题解析

1. 反转字符串 反转字符串 编写一个函数&#xff0c;其作用是将输入的字符串反转过来。输入字符串以字符数组 s 的形式给出。 不要给另外的数组分配额外的空间&#xff0c;你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。 1.1 交换 这一题的思路还是简单的&…

Flink状态和状态管理

1.什么是状态 官方定义&#xff1a;当前计算流程需要依赖到之前计算的结果&#xff0c;那么之前计算的结果就是状态。 这句话还是挺好理解的&#xff0c;状态不只存在于Flink&#xff0c;也存在生活的方方面面&#xff0c;比如看到一个认识的人&#xff0c;如何识别认识呢&am…

程序的编译流程

程序的编译过程大致可以分为以下几个阶段

八大排序算法 - Java实现

冒泡排序 排序原理&#xff1a; 比较相邻的元素。如果前一个元素比后一个元素大&#xff0c;就交换这两个元素的位置。对每一对相邻元素做同样的工作&#xff0c;从开始第一对元素到结尾的最后一对元素。最终最后位置的元素就是最大值 代码实现&#xff1a; import java.uti…

图神经网络学习

入门 目的&#xff1a;训练一个图模型&#xff0c;使得该图模型可以区分图上的黄色节点和绿色节点。 特征作为图的节点&#xff0c;颜色就是图的分类。 图的度的概念&#xff1a;与节点相连的条数。 邻接表记录的是后续邻居的信息&#xff1b; 在新闻推荐中&#xff0c;节点是…

2021年09月 C/C++(三级)真题解析#中国电子学会#全国青少年软件编程等级考试

第1题&#xff1a;余数相同问题 已知三个正整数 a&#xff0c;b&#xff0c;c。 现有一个大于1的整数x&#xff0c;将其作为除数分别除a&#xff0c;b&#xff0c;c&#xff0c;得到的余数相同。 请问满足上述条件的x的最小值是多少? 数据保证x有解。 输入 一行&#xff0c;三…

微服务中间件--Nacos

Nacos 1. Nacos入门a.服务注册到Nacosb.Nacos服务分级存储模型c.NacosRule负载均衡d.服务实例的权重设置e.环境隔离 - namespacef.Nacos和Eureka的对比 2. Nacos配置管理a.统一配置管理b.配置热更新c.多环境配置共享 1. Nacos入门 Nacos是阿里巴巴的产品&#xff0c;现在是Spr…

【前端|JS实战第1篇】使用JS来实现属于自己的贪吃蛇游戏!

前言 贪吃蛇游戏是经典的小游戏&#xff0c;也是学习前端JS的一个很好的练习项目。在本教程中&#xff0c;我们将使用 JavaScript 来逐步构建一个贪吃蛇游戏。我们会从创建游戏区域开始&#xff0c;逐步添加蛇的移动、食物的生成以及游戏逻辑等功能。 &#x1f680; 作者简介&a…

tcl学习之路(五)(Vivado时序约束)

1.主时钟约束 主时钟通常是FPGA器件外部的板机时钟或FPGA的高速收发器输出数据的同步恢复时钟信号等。下面这句语法大家一定不会陌生。该语句用于对主时钟的名称、周期、占空比以及对应物理引脚进行约束。 create_clock -name <clock_name> -periood <period> -wa…

电影《孤注一掷》感触、计算机底层二进制与十进制的转换

今天&#xff0c;我与媳妇一同在商场吃完午餐&#xff0c;正值天空绵绵细雨。近期&#xff0c;听闻一部名为《孤注一掷》的电影&#xff0c;其主人公是一位程序员&#xff0c;故事情节围绕境外电信诈骗展开&#xff0c;引发了广泛的关注。身为一名程序员&#xff0c;我对与电信…

DSO 系列文章(2)——DSO点帧管理策略

文章目录 1.点所构成的残差Residual的管理1.1.前端残差的状态1.2.后端点的残差的状态1.3.点的某个残差的删除 2.点Point的管理2.1.如何删除点——点Point的删除2.2.边缘化时删除哪些点&#xff1f; 3.帧FrameHessian的管理 DSO代码注释&#xff1a;https://github.com/Cc19245/…

Vulnhub: DriftingBlues: 2靶机

kali&#xff1a;192.168.111.111 靶机&#xff1a;192.168.111.207 信息收集 端口扫描 nmap -A -sC -v -sV -T5 -p- --scripthttp-enum 192.168.111.207 80端口的/blog目录为wordpress wpscan收集wordpress用户和爆破密码 wpscan --url http://driftingblues.box/blog -e…

深入理解Linux内核--回收页框

页框回收算法 Linux中有一点很有意思&#xff0c;在为用户态进程与内核分配动态内存时&#xff0c;所作的检查是马马虎虎的。 比如&#xff0c;对单个用户所创建进程的RAM使用总量并不作严格检查(第三章的“进程资源限制”一节提到的限制只针对单个进程); 对内核使用的许多磁盘…

【数据结构】链表的回文结构

文章目录 &#x1f30f;引言&#x1f9ed;[链表的回文结构](https://www.nowcoder.com/practice/d281619e4b3e4a60a2cc66ea32855bfa?tpId49&&tqId29370&rp1&ru/activity/oj&qru/ta/2016test/question-ranking)&#x1f6a9;&#x1f6a9;题目描述&#xf…

学习网络编程No.3【socket理论实战】

引言&#xff1a; 北京时间&#xff1a;2023/8/12/15:32&#xff0c;自前天晚上更新完文章&#xff0c;看了一下鹅厂新出的《扫毒3》摆烂至现在&#xff0c;不知道是长大了&#xff0c;还是近年港片就那样&#xff0c;给我的感觉不是很好&#xff0c;也可能是国内市场对港片不…

XXL-JOB任务调度中心后台命令执行漏洞

漏洞描述 XXL-JOB任务调度中心后台存在命令执行漏洞,攻击者可在后台通过写入shell命令任务调度获取服务器控制权限 免责声明 技术文章仅供参考,任何个人和组织使用网络应当遵守宪法法律,遵守公共秩序,尊重社会公德,不得利用网络从事危害国家安全、荣誉和利益,未经授权…

AndroidAGP8.1.0和JDK 17迁移之旅

AndroidAGP8.1.0和JDK 17迁移之旅 前言&#xff1a; 由于我最近写demo的直接把之前的项目从AGP4.2.2升级到8.1.0引发了一些列问题&#xff0c;这里记录一下&#xff0c;前面讲解过迁移DSL方式遇到的问题&#xff0c;这次升级8.1.0也比之前顺利多了&#xff0c;想看DSL迁移的可…