R语言用向量自回归(VAR)进行经济数据脉冲响应研究分析

news2025/1/11 12:35:39

 自从Sims(1980)发表开创性的论文以来,向量自回归模型已经成为宏观经济研究中的关键工具。最近我们被客户要求撰写关于向量自回归(VAR)的研究报告,包括一些图形和统计输出。这篇文章介绍了VAR分析的基本概念,并指导了简单模型的估算过程。 

单变量自回归

VAR代表向量自回归。为了理解这意味着什么,让我们首先来看一个简单的单变量(即仅一个因变量或内生变量)自回归(AR)模型,其形式为yt=a1yt−1+et。 

视频:向量自回归VAR数学原理及R软件经济数据脉冲响应分析实例

【视频】向量自回归VAR数学原理及R语言软件经济数据脉冲响应分析实例

,时长12:01

平稳性

在估算此类模型之前,应始终检查所分析的时间序列是否稳定,即它们的均值和方差随时间变化是恒定的,并且不显示任何趋势行为。 

有一系列统计检验,例如Dickey-Fuller,KPSS或Phillips-Perron检验,以检验序列是否稳定。另一种非常常见的做法是绘制序列并检查其是否围绕恒定的平均值(即水平线)移动。如果是这种情况,它很可能是稳定的。 

自回归滞后模型

像AR(p)模型一样,仅凭其自身的滞后对宏观经济变量进行回归可能是一种限制性很大的方法。通常,更合适的假设是还有其他因素。通过包含因变量的滞后值以及其他(即,外生)变量的同期和滞后值的模型来实现这种想法。同样,这些外生变量应该是稳定的。对于内生变量yt和外生变量xt例如自回归分布滞后或ADL,模型可以写成

yt=a1yt−1+b0xt+b1xt−1+et.

这种ADL模型的预测性能可能会比简单的AR模型更好。但是,如果外生变量也依赖于内生变量的滞后值怎么办?这意味着xt也是内生的,还有进一步的空间可以改善我们的预测。

向量自回归模型

 因此,如上所述,VAR模型可以重写为一系列单独的ADL模型。实际上,可以通过分别估计每个方程来估计VAR模型。

标准VAR模型的协方差矩阵是对称的,即,对角线右上角的元素(“上三角”)将对角线左下角的元素(“下三角”)镜像。这反映了这样一种想法,即内生变量之间的关系仅反映相关性,并且不允许做出因果关系的陈述,因为在每个方向上的影响都是相同的。 

在所谓的结构化 VAR(SVAR)模型的背景下分析了同时因果关系,或更确切地说,是变量之间的结构关系,该模型对协方差矩阵施加了限制 。 

在本文中,我考虑VAR(2)过程。 

此示例的人工样本是在R中生成的

set.seed(123) # 由于可复制性的考虑,重置随机数发生器

# 生成样本
t <- 200 # 时间序列观察数
k <- 2 # 内生变量数
p <- 2 # 滞后阶数

# 生成系数矩阵
A.1 <- matrix(c(-.3, .6, -.4, .5), k) # 滞后系数矩阵1
A.2 <- matrix(c(-.1, -.2, .1, .05), k) # 滞后系数2
A <- cbind(A.1, A.2) # 系数矩阵

# 生成序列

series <- matrix(0, k, t + 2*p) # 带有0的原始序列
for (i in (p + 1):(t + 2*p)){ # 生成e ~ N(0,0.5)的序列
  series[, i] <- A.1%*%series[, i-1] + A.2%*%series[, i-2] + rnorm(k, 0, .5)
}

series <- ts(t(series[, -(1:p)])) # 转换为时间序列格式
names <- c("V1", "V2") # 重命名变量

plot.ts(series) # 绘制序列

估算值

简单VAR模型的参数和协方差矩阵的估计很简单。

为了估计VAR模型,加载并指定数据(y)和 模型。 

 比较

VAR分析中的一个中心问题是找到滞后的阶数,以产生最佳结果。模型比较通常基于信息标准,例如AIC,BIC或HQ。通常,由于是小样本预测,AIC优于其他标准。但是,BIC和HQ在大型样本中效果很好 。

可以计算标准信息标准以找到最佳模型。在此示例中,我们使用AIC:

 通过查看,summary我们可以看到AIC建议使用2的阶数。

summary(var.aic)
## 
## VAR Estimation Results:
## ========================= 
## Endogenous variables: Series.1, Series.2 
## Deterministic variables: none 
## Sample size: 200 
## Log Likelihood: -266.065 
## Roots of the characteristic polynomial:
## 0.6611 0.6611 0.4473 0.03778
## Call:
## VAR(y = series, type = "none", lag.max = 5, ic = "AIC")
## 
## 
## Estimation results for equation Series.1: 
## ========================================= 
## Series.1 = Series.1.l1 + Series.2.l1 + Series.1.l2 + Series.2.l2 
## 
##             Estimate Std. Error t value Pr(>|t|)    
## Series.1.l1 -0.19750    0.06894  -2.865  0.00463 ** 
## Series.2.l1 -0.32015    0.06601  -4.850 2.51e-06 ***
## Series.1.l2 -0.23210    0.07586  -3.060  0.00252 ** 
## Series.2.l2  0.04687    0.06478   0.724  0.47018    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 0.4638 on 196 degrees of freedom
## Multiple R-Squared: 0.2791,  Adjusted R-squared: 0.2644 
## F-statistic: 18.97 on 4 and 196 DF,  p-value: 3.351e-13 
## 
## 
## Estimation results for equation Series.2: 
## ========================================= 
## Series.2 = Series.1.l1 + Series.2.l1 + Series.1.l2 + Series.2.l2 
## 
##             Estimate Std. Error t value Pr(>|t|)    
## Series.1.l1  0.67381    0.07314   9.213  < 2e-16 ***
## Series.2.l1  0.34136    0.07004   4.874 2.25e-06 ***
## Series.1.l2 -0.18430    0.08048  -2.290   0.0231 *  
## Series.2.l2  0.06903    0.06873   1.004   0.3164    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 0.4921 on 196 degrees of freedom
## Multiple R-Squared: 0.3574,  Adjusted R-squared: 0.3443 
## F-statistic: 27.26 on 4 and 196 DF,  p-value: < 2.2e-16 
## 
## 
## 
## Covariance matrix of residuals:
##          Series.1 Series.2
## Series.1  0.21417 -0.03116
## Series.2 -0.03116  0.24154
## 
## Correlation matrix of residuals:
##          Series.1 Series.2
## Series.1    1.000   -0.137
## Series.2   -0.137    1.000

仔细观察结果,我们可以将真实值 与模型的参数估计值进行比较:

# 真实值
A
##      [,1] [,2] [,3] [,4]
## [1,] -0.3 -0.4 -0.1 0.10
## [2,]  0.6  0.5 -0.2 0.05
# Extract coefficients, standard errors etc. from the object
# produced by the VAR function
est_coefs <- coef(var.aic)

# 仅提取两个因变量的系数,并将它们组合为一个矩阵

# 输出四舍五入的估计值
round(est_coefs, 2)
##      Series.1.l1 Series.2.l1 Series.1.l2 Series.2.l2
## [1,]       -0.20       -0.32       -0.23        0.05
## [2,]        0.67        0.34       -0.18        0.07

所有估计值都有正确的符号,并且相对接近其真实值。 

脉冲响应

一旦我们确定了最终的VAR模型,就必须解释其估计的参数值。由于VAR模型中的所有变量都相互依赖,因此单个参数值仅提供 有限信息。为了更好地了解模型的动态行为,使用了脉冲响应(IR)。可以绘制响应变量的轨迹,产生在许多宏观论文中都可以找到的那些波浪曲线。

在下面的示例中,我们想知道受到冲击后序列2的行为。指定了我们想要脉冲响应的模型和变量后,我们将时间范围设置n.ahead为20。该图给出了序列2的响应。 

# 计算脉冲响应

# 绘制脉冲响应
plot(ir.1)

请注意,正交选项很重要,因为它说明了变量之间的关系。在我们的示例中,我们已经知道不存在这样的关系,因为真正的方差-协方差矩阵(或简称协方差矩阵)在非对角元素中是对角为零的对角线。但是,由于具有200个观测值的有限时间序列数据限制了参数估计的精度,因此协方差矩阵的非对角元素具有正值,这意味着 非零同时效应。为了在IR中排除这种情况,我们设置了ortho = FALSE。结果是,脉冲响应在周期0中从零开始。 也可以尝试另一种方法并进行设置ortho = TRUE,那么绘图从零开始。 

 要了解这一点,还可以计算并绘制累积脉冲响应函数,以了解 总体长期影响:

# 计算脉冲响应

# 绘图
plot(ir.2)

我们看到,尽管序列2对序列1中的 反应在某些时期是负面的,但总体效果却是显着正面。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/76524.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java高级——后端编译与优化

后端编译与优化解释器和编译器编译器即时编译器分层编译热点代码热点探测计数器编译过程查看及分析即时编译结果提前编译器jaotc的提前编译后端编译优化总览优化演示方法内联&#xff08;最重要的优化技术之一&#xff09;逃逸分析&#xff08;最前沿的优化技术之一&#xff09…

15. 过拟合和欠拟合

1. 过拟合和欠拟合 当数据比较简单时&#xff0c;使用模型容量低的模型更好&#xff0c;否则使用高的会出现过拟合。如果是复杂的数据用到简单模型上会出现欠拟合&#xff0c;用到复杂模型上是正常的。 2. 模型容量 模型容量&#xff1a;拟合各种函数的能力 低容量的模型难以…

Springboot+Easyexcel:导出excel表格

常规导出 常规导出excel有两种&#xff0c;个人比较推荐第一种&#xff1a; 1、新建一个导出数据的实体类&#xff0c;用ExcelProperty()注解标明excel中列的中文名称&#xff1b;如果实体的类某些列不想导出&#xff0c;可以使用ExcelIgnore进行忽略就可以了。 2、使用easyexc…

彻底理解Python中浅拷贝和深拷贝的区别

目录 前言 1. 浅拷贝和深拷贝的概念 2. is和的区别 3. 赋值操作 4. copy模块里面的copy()方法 5. copy模块里面的deepcopy()方法 6.字典自带的copy方法 7.切片表达式拷贝 前言 Python 的所有变量其实都是指向内存中的对象的一个指针&#xff0c;这确实和之前学过的强类…

JDBC基本使用(第一个jdbc程序)

在web开发中&#xff0c;不可避免的地要使用数据库来存储和管理数据。为了在java语言中提供数据库访问的支持&#xff0c;Sun公司于1996年提供了一套访问数据的标准Java类库&#xff0c;即JDBC。 JDBC的全称是Java数据库连接(Java Database connect)&#xff0c;它是一套用于执…

Web3中文|AI机器人ChatGPT如何看待DeFi?

如果还没有玩过OpenAI最新的聊天机器人ChatGPT&#xff0c;那您真的应该体验一下。 从电影推介到编程查询&#xff0c;ChatGPT几乎可以对您向它提出的任何提示做出类似人类的逻辑响应。这种新奇的感觉就像乔布斯第一次滑动解锁iPhone屏幕时那样。 与加密货币一样&#xff0c;…

nacos配置在代码中如何引用

1、在代码的模块服务中安装nacos 配置依赖 <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-nacos-config</artifactId></dependency>2、在nacos配置中心中进行服务配置 注意不是模块名&#…

LeetCode刷题复盘笔记—一文搞懂动态规划之213. 打家劫舍 II问题(动态规划系列第十八)

今日主要总结一下动态规划完全背包的一道题目&#xff0c;213. 打家劫舍 II 题目&#xff1a;213. 打家劫舍 II Leetcode题目地址 题目描述&#xff1a; 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋&#xff0c;每间房内都藏有一定的现金。这个地方所有的房屋都 围成一…

电力系统短期负荷预测(Python代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

莲花-第10届蓝桥杯Scratch选拔赛真题精选

[导读]&#xff1a;超平老师计划推出Scratch蓝桥杯真题解析100讲&#xff0c;这是超平老师解读Scratch蓝桥真题系列的第99讲。 蓝桥杯选拔赛每一届都要举行4~5次&#xff0c;和省赛、国赛相比&#xff0c;题目要简单不少&#xff0c;再加上篇幅有限&#xff0c;因此我精挑细选…

16. 模型选择,欠拟合和过拟合 代码实现

我们现在可以通过多项式拟合来探索这些概念。 import math import numpy as np import torch from torch import nn from d2l import torch as d2l1. 生成数据集 max_degree 20 # 多项式的最大阶数&#xff0c;20个特征 n_train, n_test 100, 100 # 训练和测试数据集大小…

Kafka概念以及参数

概念&#xff1a; Concept: 主题&#xff1a;Topic。主题是承载消息的逻辑容器&#xff0c;在实际使用中多用来区分具体的业务。 Subject: Topic. A topic is a logical container that carries messages. In practice, it is often used to distinguish specific services.…

[附源码]计算机毕业设计的高校车辆租赁管理系统Springboot程序

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

在软件定义网络中使用机器学习的方法进行 DDOS 攻击检测与缓解--实验

在软件定义网络中使用机器学习的方法进行 DDOS 攻击检测与缓解--实验〇、拉取代码一、 配置环境二、 正常流量收集三、攻击流量数据四、DDoS攻击检测与缓解4.1 正常流量的检测4.2 攻击流量的检测与缓解五&#xff0c;精准度和检测率申明&#xff1a; 未经许可&#xff0c;禁止以…

Existence theorem

In mathematics, an existence theorem is a theorem which asserts the existence of a certain object.[1] It might be a statement which begins with the phrase “there exist(s)”, or it might be a universal statement whose last quantifier is existential (e.g., …

ADI Blackfin DSP处理器-BF533的开发详解22:SD卡的设计和实现原理及应用(含源码)

硬件准备 ADSP-EDU-BF533&#xff1a;BF533开发板 AD-HP530ICE&#xff1a;ADI DSP仿真器 软件准备 Visual DSP软件 硬件链接 功能介绍 ADSP-EDU-BF53x 板卡上设计了一个 SD/MMC 接口&#xff0c;可以通过该接口实现对 SD/MMC 卡数据的访问。 SD 卡有两种工作模式&#x…

C#使用 Async 和 Await 的异步编程

总目录 文章目录总目录前言一、概述二、命名规范三、await/async的作用四、基本使用五、使用Async和Await实现多任务顺序执行且不阻塞1.同步执行2.并行执行3.并行且可指定顺序执行总结前言 C# 中的 Async 和 Await 关键字是异步编程的核心。 通过这两个关键字&#xff0c;可以…

spring依赖查找、依赖注入深入学习及源码分析

文章目录一、依赖查找1、单一类型依赖查找&#xff08;接口 - BeanFactory&#xff09;根据Bean名称查找根据Bean类型实时查找根据Bean类型延迟查找&#xff08;Spring 5.1&#xff09;根据Bean名称类型查找2、集合类型依赖查找&#xff08;接口 - ListableBeanFactory&#xf…

Metal每日分享,颜色转换滤镜效果

本案例的目的是理解如何用Metal实现像素颜色转换滤镜&#xff0c;通过对像素颜色的不同读取方式获取到相应像素颜色&#xff0c;灰度图移除场景中除了黑白灰以外所有的颜色&#xff0c;让整个图像灰度化&#xff1b; Demo HarbethDemo地址 实操代码 // 转成灰度图滤镜 let f…

js深拷贝浅拷贝与lodash

title: js深拷贝浅拷贝与lodash date: 2022/9/27 14:46:25 categories: lodashjs入门 深拷贝和浅拷贝 ref&#xff1a;JS传递参数时的内部存储逻辑 JS 變數傳遞探討&#xff1a;pass by value 、 pass by reference 還是 pass by sharing&#xff1f; 在这个问题前&#xff…