查询性能
假设 我们有一列int 类型的value 对它进行查询 (VALUE无重复字段)
SELECT value FROM table where value = 8;
如过是普通索引 找到value = 8 的记录后还会继续找,直到碰到第一个不满足 k=5 条件的记录。
如过是唯一索引 找到value = 8这条记录就不会往下找了
我们可以看到唯一索引确实是比普通索引好一点 不过这一点是微乎其微的 因为MYSQL在加载数据时的单位是'页' 把整个页加载到内存中
所以说,当找到 value = 8的记录的时候,它所在的数据页就都在内存里了。那么,对于普通索引来说,要多做的那一次“查找和判断下一条记录”的操作,就只需要一次指针寻找和一次计算。
当然,如果这个记录刚好是这个数据页的最后一个记录,那么要取下一个记录,必须读取下一个数据页,这个操作会稍微复杂一些。
但是,对于整型字段,一个数据页可以放近千个 key,(数据页大小默认16kb)因此出现这种情况的概率会很低。所以,我们计算平均性能差异时(内存上的操作是很快的),仍可以认为这个操作成本对于现在的 CPU 来说可以忽略不计。
更新过程
当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话,在不影响数据一致性的前提下,InooDB 会将这些更新操作缓存在 change buffer 中,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行 change buffer 中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。
需要说明的是,虽然名字叫作 change buffer,实际上它是可以持久化的数据。也就是说,change buffer 在内存中有拷贝,也会被写入到磁盘上。
将 change buffer 中的操作应用到原数据页,得到最新结果的过程称为 merge。除了访问这个数据页会触发 merge 外,系统有后台线程会定期 merge。在数据库正常关闭(shutdown)的过程中,也会执行 merge 操作。
显然,如果能够将更新操作先记录在 change buffer,减少读磁盘,语句的执行速度会得到明显的提升。而且,数据读入内存是需要占用 buffer pool 的,所以这种方式还能够避免占用内存,提高内存利用率。
什么条件下可以使用 change buffer 呢?
对于唯一索引来说,所有的更新操作都要先判断这个操作是否违反唯一性约束。比如,要插入 一条记录,就要先判断现在表中是否已经存在相同的记录,而这必须要将数据页读入内存才能判断。如果都已经读入到内存了,那直接更新内存会更快,就没必要使用 change buffer 了。
因此,唯一索引的更新就不能使用 change buffer,实际上也只有普通索引可以使用。
所以对比一下他们的性能
第一种情况是,这个记录要更新的目标页在内存中。这时,InnoDB 的处理流程如下:
- 对于唯一索引来说,找到 3 和 5 之间的位置,判断到没有冲突,插入这个值,语句执行结束;
- 对于普通索引来说,找到 3 和 5 之间的位置,插入这个值,语句执行结束。
这样看来,普通索引和唯一索引对更新语句性能影响的差别,只是一个判断,只会耗费微小的 CPU 时间。
但,这不是我们关注的重点。
第二种情况是,这个记录要更新的目标页不在内存中。这时,InnoDB 的处理流程如下:
- 对于唯一索引来说,需要将数据页读入内存,判断到没有冲突,插入这个值,语句执行结束;
- 对于普通索引来说,则是将更新记录在 change buffer,语句执行就结束了。
将数据从磁盘读入内存涉及随机 IO 的访问,是数据库里面成本最高的操作之一。change buffer 因为减少了随机磁盘访问,所以对更新性能的提升是会很明显的。
等等啊等等
我捋一捋啊
Buffer Pool 里面有一个脏页机制 也是用来减少磁盘I/O操作 它是当更新操作发生的时候 直接在当前页上面修改 所以当前页和储存页不相同也就是脏页 然后在适当时机统一刷入脏页
然后这有个change buffer它就是当更新操作出现时 直接把这个更新行为存在change buffer然后等下一次 读数据的时候 再把更新写上去(如果更新就写上去的话 会直接触发一次I/O操作 而读的时候无论如何都会发生一次I/O操作 这俩放在一起就省了一次)
综上所述change buffer是把更新操作"缓"住了 buffer pool 是把整个页给缓住了
普通索引的所有场景,使用 change buffer 都可以起到加速作用吗?
因为 merge 的时候是真正进行数据更新的时刻,而 change buffer 的主要目的就是将记录的变更动作缓存下来,所以在一个数据页做 merge 之前,change buffer 记录的变更越多(也就是这个页面上要更新的次数越多),收益就越大。
因此,对于写多读少的业务来说,页面在写完以后马上被访问到的概率比较小,此时 change buffer 的使用效果最好。这种业务模型常见的就是账单类、日志类的系统(OLTP)。
反过来,假设一个业务的更新模式是写入之后马上会做查询,那么即使满足了条件,将更新先记录在 change buffer,但之后由于马上要访问这个数据页,会立即触发 merge 过程。这样随机访问 IO 的次数不会减少,反而增加了 change buffer 的维护代价。所以,对于这种业务模式来说,change buffer 反而起到了副作用。