关于深度学习图像数据增广

news2024/11/15 8:37:59

数据增广方法在广义上可以按照产生新数据的方式分为数据变形和数据过采样。由于操作简单,同时数据量上的需求远比现在要低得多,早期对数据增广的应用多是数据变形类方法。对于图像数据,基本的图像变换操作都属于数据变形类增广方法,在应用到深度学习中的工作最早可见于LeNet-5对图像进行仿射变换。随着卷积神经网络的发展,各种经典的网络模型在其图像分类任务中都或多或少地采用了数据变形类增广方法以防止过拟合问题。例如,AlexNet使用了裁剪、水平镜像、基于主成分分析的色彩增强对训练数据进行增广; VGG网络使用了多尺度缩放和裁剪的方式进行数据增广; GoogLeNet采用了AlexNet中的裁剪加镜像的方法并且进一步拓展,在测试时进行数据增广,将一幅图像增广到144 个样本,并对所有样本的Softmax概率取平均值以得到最终分类结果; 类似地,在后来的残差网络和密集连接卷积网络中,也都采用了最简单的几何变换对图像进行数据增广,并且也都取得了显著的精度提升。

除了采用图像处理中基本的图像变换和图像增强操作,受dropout主动删除一部分神经元信息以解决过拟合问题的启发,随机删除图像中的局部信息来进行数据增广的方法被提出。除了在单幅图像上进行变换,采用多幅图像进行信息混合,其中最为代表性的方法有SamplePairing 、mixup、SMOTE等,这类方法本质上属于数据过采样。

之后,随着机器学习的进一步发展,诞生了对抗学习、元学习、强化学习等新的智能化概念。由于生成对抗网络可以生成十分逼真的图像,一种很自然的想法便是借助其产生新的图像样本进而扩充训练数据集,这种想法的有效性在不同的领域和任务中都得到了验证。而借助元学习和强化学习的思想,可以训练一个模型去自适应地选用最优的数据增广策略,来实现模型性能提升的最大化,如AutoAugment和RandAugment,为未来数据增广方法的发展定义了新的研究方向,同时也为智能化选择数据增广策略奠定了新的基础。

你可以去看看相关的综述,对数据增广方法比较全面的综述是Shorten和Khoshgoftaar于2019 年发表的文章,该综述从方法的复杂度角度考虑把数据增广方法分成“基本图像操作”和“深度学习方法”两大类,详述了每大类包含的各种方法及其应用效果。

一般情况下,可以将数据扩增方法分为单数据变形、多数据混合、学习数据分布规律生成新数据和学习增广策略等4 类方法。以上顺序也在一定程度上反映了数据增广方法的发展历程。如果与Shorten和Khoshgoftaar的成果对照,就图像数据而言,基于数据变形和数据混合的方法可看做是基本的图像变换操作,而学习数据分布和学习增广策略的方法主要依赖于机器学习中的生成式方法和策略搜索方法,大多依赖于深度学习方法。为避免针对图像的“数据增强”与数字图像处理领域中“图像增强”的混淆,一般使用“数据增广”表示机器学习领域内增加样本数量、扩大训练集的这类方法。

相关的文章参考

几种信号降噪算法(第一部分)

https://www.toutiao.com/article/7190201924820402721/

几种信号降噪算法(第二部分)

https://www.toutiao.com/article/7190270349236683264/

机械故障诊断及工业工程故障诊断若干例子(第一篇)

https://www.toutiao.com/article/7193957227231855163/

知乎咨询:哥廷根数学学派

算法代码地址,面包多主页:mbd.pub/o/GeBENHAGEN

擅长现代信号处理(改进小波分析系列,改进变分模态分解,改进经验小波变换,改进辛几何模态分解等等),改进机器学习,改进深度学习,机械故障诊断,改进时间序列分析(金融信号,心电信号,振动信号等)

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/732240.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Jvm参数设置-JVM(八)

上篇文章说了逃逸分析和标量,代码实例解析了内存分配先从eden区域开始,当内存不足的时候,才会进入s0和s1,发生yangGC,之后大内存会放入old,因为我们昨天程序运行了一个45M的对象,于是小对象在ed…

详解------>数组笔试题(必备知识)

目录 本章将通过列题进一步了解sizeof 与strlen的区别,加强对数组的理解。 1:一维数组列题 2:字符数组列题 3:二维数组列题 首先在进行这些习题讲解之前我们需要知道的知识点 sizeof:是一个关键字,可以…

KMP--高效字符串匹配算法(Java)

KMP算法 KMP算法算法介绍代码演示: KMP算法 KMP算法是为了解决这一类问题,给定一个字符串str1,和一个字符串str2,如果str2属于str1d的字串,则返回字串第一个出现位置的下标,不存在返回-1. 注意: 子串是连续的. 举个例子 str1 “abc123abs” str1 长度假设m str2 “123”; str2…

pycharm汉化

安装pycharm 不多说了,直接下载安装即可 汉化 file -setting plugins 输入chinese进行搜索 点击 进行安装,等待安装完成 安装完成需要重启,点击重启,等待重启完成即可 出现上图,说明汉化成功了

【计算机视觉】YOLOv8的测试以及训练过程(含源代码)

文章目录 一、导读二、部署环境三、预测结果3.1 使用检测模型3.2 使用分割模型3.3 使用分类模型3.4 使用pose检测模型 四、COCO val 数据集4.1 在 COCO128 val 上验证 YOLOv8n4.2 在COCO128上训练YOLOv8n 五、自己训练5.1 训练检测模型5.2 训练分割模型5.3 训练分类模型5.4 训练…

Mybatis-xml和动态sql

xml映射方式 除了之前那种 select(语句) public void ...();通过注解定义sql语句&#xff0c;还可以通过xml的方式来定义sql语句 注意 在resource创建的是目录&#xff0c;要用斜线分隔 创建出文件后 先写约束 <?xml version"1.0" encoding"UTF-8"…

第4集丨JavaScript 使用原型(prototype)实现继承——最佳实战2

目录 一、临时构造器方式1.1 代码实现1.2 代码分析 二. 增加uber属性&#xff0c;用于子对象访问父对象2.1 实现分析2.2 代码实现 三. 将继承封装成extend()函数3.1 代码实现3.1.1 临时构造器实现extend()3.1.2 原型复制实现extend2() 3.2 代码测试3.2.1 测试extend()函数3.2.1…

uniapp打包嵌入app,物理返回键的问题

问题描述&#xff1a;将uniapp开发的应用打包成wgt包放入app后&#xff0c;发现手机自带的返回键的点击有问题&#xff0c;比如我从app原生提供的入口进入了uniapp的列表页&#xff0c;然后我又进入了详情页&#xff0c;这时候在详情页点击物理返回键的话&#xff0c;它直接就返…

C语言—最大公约数和最小公倍数

作者主页&#xff1a;paper jie的博客_CSDN博客-C语言,算法详解领域博主 本文作者&#xff1a;大家好&#xff0c;我是paper jie&#xff0c;感谢你阅读本文&#xff0c;欢迎一建三连哦。 本文录入于《算法详解》专栏&#xff0c;本专栏是针对于大学生&#xff0c;编程小白精心…

过河卒

题目描述 棋盘上 A 点有一个过河卒&#xff0c;需要走到目标 B 点。卒行走的规则&#xff1a;可以向下、或者向右。同时在棋盘上 C 点有一个对方的马&#xff0c;该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。 棋盘用坐标表示&#xff…

云同步盘 vs 普通网盘:选择哪种更适合你?区别解析与选购指南!

云同步盘是一种基于云存储的在线服务&#xff0c;主要用于将本地文件存储到云端&#xff0c;并通过客户端软件实现文件的自动同步&#xff0c;从而保持本地和云端文件的同步更新。用户可以在任何设备上访问和共享这些文件。 云同步盘和普通云盘都是云存储服务&#xff0c;可以让…

Kubernetes CoreDNS

Kubernetes CoreDNS 1、DNS服务概述 coredns github 地址&#xff1a; https://github.com/kubernetes/kubernetes/blob/master/cluster/addons/dns/coredns/coredns.yaml.base service 发现是 k8s 中的一个重要机制&#xff0c;其基本功能为&#xff1a;在集群内通过服务名…

TL-ER2260T获取SSH密码并登录后台

TL-ER2260T获取SSH密码并登录后台 首先需要打开诊断模式 打开Ubuntu&#xff0c;通过如下指令计算SSH密码&#xff0c;XX-XX-XX-XX-XX-XX是MAC地址echo -n "XX-XX-XX-XX-XX-XX" | tr -d - | tr [a-z] [A-Z] | md5sum | cut -b 1-16SSH登录ssh -oKexAlgorithmsdiffie…

硬件打样和小批量生产

PCB 打样和小批量生产过程 包括PCB 定型、生产文件制作、元器件准备、装配图制作、贴片、全流程测试。 打样一般是 几块PCB 手工进行焊接。 其中生产文件根据加工厂 一般提供PCB或者Gerber。 元器件准备设计公司的物料管理&#xff0c;这里假设已经拿到了所需的物料。 装…

微信小程序开发22__在列表中 高亮选中某一项

思考一个问题: 在一个列表中&#xff0c;怎样实现高亮选中 某一项呢? 我们先看要实现的效果图 <!-- 这里data-index 用于点击时传递参数, 在js取时写法&#xff1a; e.target.dataset.index --> <view wx:for"{{info}}" class"{{indexnum?active:…

UTOPIA Automatic Generation of Fuzz Driver using Unit Tests

UTOPIA: Automatic Generation of Fuzz Driver using Unit Tests 这篇论文主要由三星研究院发表于2023 IEEE Symposium on Security and Privacy (SP)会议上 论文获取链接&#xff1a; https://gts3.org/assets/papers/2023/jeong:utopia.pdf 背景 模糊测试分为两种&#xf…

整理FTP协议相关知识,撰写FTP服务器文件列表展示、文件上传、文件下载等代码案例和实现步骤细节;

1、FTP简介&#xff1a; FTP 是File Transfer Protocol&#xff08;文件传输协议&#xff09;的英文简称&#xff0c;而中文简称为“文传协议”。用于Internet上的控制文件的双向传输。同时&#xff0c;它也是一个应用程序&#xff08;Application&#xff09;。基于不同的操作…

Redis-Desktop-Manager连接时出现Can’t connect to redis-server

目录 1. Redis-Desktop-Manager连接需要四个参数 2.修改数据库配置文件 3.关闭防火墙 4.此时连接Redis-Desktop-Manager 1. Redis-Desktop-Manager连接需要四个参数 Name&#xff1a;自定义连接名 Host&#xff1a;redis服务器地址&#xff0c;在CentOS终端中使用命令&…

dubbo入门

Dubbo概述 官网&#xff1a; https://dubbo.apache.org Dubbo快速入门 1 安装zk 参考 https://blog.csdn.net/qq_34914039/article/details/131614771 2 实现步骤

人体扫描新技术:手机扫描生成3D人体模型

人体扫描是一种新兴的技术&#xff0c;它可以通过数字化的方式&#xff0c;再现人体的内部结构。这种模型的应用范围广泛&#xff0c;不仅可以应用于医学领域&#xff0c;还可以用于虚拟现实、游戏开发等各个领域。通过人体扫描生成模型&#xff0c;我们可以实时地观察人体内部…