216.组合总和III
题目链接
解题思路:
选取过程如图:
图中,可以看出,只有最后取到集合(1,3)和为4 符合条件。
递归三部曲
- 确定递归函数参数
和77. 组合 一样,依然需要一维数组path来存放符合条件的结果,二维数组result来存放结果集。
这里我依然定义path 和 result为全局变量。
至于为什么取名为path?从上面树形结构中,可以看出,结果其实就是一条根节点到叶子节点的路径。
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
接下来还需要如下参数:
- targetSum(int)目标和,也就是题目中的n。
- k(int)就是题目中要求k个数的集合。
- sum(int)为已经收集的元素的总和,也就是path里元素的总和。
- startIndex(int)为下一层for循环搜索的起始位置。
所以代码如下:
vector<vector<int>> result;
vector<int> path;
void backtracking(int targetSum, int k, int sum, int startIndex)
其实这里sum这个参数也可以省略,每次targetSum减去选取的元素数值,然后判断如果targetSum为0了,说明收集到符合条件的结果了,我这里为了直观便于理解,还是加一个sum参数。
还要强调一下,回溯法中递归函数参数很难一次性确定下来,一般先写逻辑,需要啥参数了,填什么参数。
- 确定终止条件
什么时候终止呢?
在上面已经说了,k其实就已经限制树的深度,因为就取k个元素,树再往下深了没有意义。
所以如果path.size()
和 k相等了,就终止。
如果此时path里收集到的元素和(sum) 和targetSum(就是题目描述的n)相同了,就用result收集当前的结果。
所以 终止代码如下:
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
- 单层搜索过程
本题和77. 组合区别之一就是集合固定的就是9个数[1,…,9],所以for循环固定i<=9
如图:
处理过程就是 path收集每次选取的元素,相当于树型结构里的边,sum来统计path里元素的总和。
代码如下:
for (int i = startIndex; i <= 9; i++) {
sum += i;
path.push_back(i);
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
别忘了处理过程 和 回溯过程是一一对应的,处理有加,回溯就要有减!
不难写出如下C++代码:
class Solution {
private:
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
// targetSum:目标和,也就是题目中的n。
// k:题目中要求k个数的集合。
// sum:已经收集的元素的总和,也就是path里元素的总和。
// startIndex:下一层for循环搜索的起始位置。
void backtracking(int targetSum, int k, int sum, int startIndex) {
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
for (int i = startIndex; i <= 9; i++) {
sum += i; // 处理
path.push_back(i); // 处理
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
}
public:
vector<vector<int>> combinationSum3(int k, int n) {
result.clear(); // 可以不加
path.clear(); // 可以不加
backtracking(n, k, 0, 1);
return result;
}
};
剪枝
如图:
已选元素总和如果已经大于n(图中数值为4)了,那么往后遍历就没有意义了,直接剪掉。
那么剪枝的地方可以放在递归函数开始的地方,剪枝代码如下:
if (sum > targetSum) { // 剪枝操作
return;
}
当然这个剪枝也可以放在 调用递归之前,即放在这里,只不过要记得 要回溯操作给做了。
for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
sum += i; // 处理
path.push_back(i); // 处理
if (sum > targetSum) { // 剪枝操作
sum -= i; // 剪枝之前先把回溯做了
path.pop_back(); // 剪枝之前先把回溯做了
return;
}
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
和回溯算法:组合问题再剪剪枝一样,for循环的范围也可以剪枝,i <= 9 - (k - path.size()) + 1就可以了。
最后C++代码如下:
class Solution {
private:
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
void backtracking(int targetSum, int k, int sum, int startIndex) {
if (sum > targetSum) { // 剪枝操作
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return;
}
for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
sum += i; // 处理
path.push_back(i); // 处理
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
}
public:
vector<vector<int>> combinationSum3(int k, int n) {
result.clear(); // 可以不加
path.clear(); // 可以不加
backtracking(n, k, 0, 1);
return result;
}
};
17.电话号码的字母组合
题目链接
解题思路:
回溯三部曲:
- 确定回溯函数参数
首先需要一个字符串s来收集叶子节点的结果,然后用一个字符串数组result保存起来,这两个变量我依然定义为全局。
再来看参数,参数指定是有题目中给的string digits,然后还要有一个参数就是int型的index。
这个index是记录遍历第几个数字了,就是用来遍历digits的(题目中给出数字字符串),同时index也表示树的深度。
代码如下:
vector<string> result;
string s;
void backtracking(const string& digits, int index)
- 确定终止条件
例如输入用例"23",两个数字,那么根节点往下递归两层就可以了,叶子节点就是要收集的结果集。
那么终止条件就是如果index 等于 输入的数字个数(digits.size)了(本来index就是用来遍历digits的)。
然后收集结果,结束本层递归。
代码如下:
if (index == digits.size()) {
result.push_back(s);
return;
}
- 确定单层遍历逻辑
首先要取index指向的数字,并找到对应的字符集(手机键盘的字符集)。
然后for循环来处理这个字符集,代码如下:
int digit = digits[index] - '0'; // 将index指向的数字转为int
string letters = letterMap[digit]; // 取数字对应的字符集
for (int i = 0; i < letters.size(); i++) {
s.push_back(letters[i]); // 处理
backtracking(digits, index + 1); // 递归,注意index+1,一下层要处理下一个数字了
s.pop_back(); // 回溯
}
整体代码如下:
class Solution {
private:
const string letterMap[10] = {
"", // 0
"", // 1
"abc", // 2
"def", // 3
"ghi", // 4
"jkl", // 5
"mno", // 6
"pqrs", // 7
"tuv", // 8
"wxyz", // 9
};
public:
vector<string> result;
string s;
void backtracking(const string& digits, int index) {
if (index == digits.size()) {
result.push_back(s);
return;
}
int digit = digits[index] - '0'; // 将index指向的数字转为int
string letters = letterMap[digit]; // 取数字对应的字符集
for (int i = 0; i < letters.size(); i++) {
s.push_back(letters[i]); // 处理
backtracking(digits, index + 1); // 递归,注意index+1,一下层要处理下一个数字了
s.pop_back(); // 回溯
}
}
vector<string> letterCombinations(string digits) {
s.clear();
result.clear();
if (digits.size() == 0) {
return result;
}
backtracking(digits, 0);
return result;
}
};