Disruptor(1):Disruptor简介

news2024/11/16 1:38:05

1 什么是Disruptor

Martin Fowler在自己网站上写了一篇LMAX架构的文章,在文章中他介绍了LMAX是一种新型零售金融交易平台,它能够以很低的延迟产生大量交易。这个系统是建立在JVM平台上,其核心是一个业务逻辑处理器,它能够在一个线程里每秒处理6百万订单。业务逻辑处理器完全是运行在内存中,使`用事件源驱动方式。业务逻辑处理器的核心是Disruptor。

Disruptor它是一个开源的并发框架,并获得2011 Duke’s 程序框架创新奖,能够在无锁的情况下实现网络的Queue并发操作。

Disruptor是一个高性能的异步处理框架,或者可以认为是最快的消息框架(轻量的JMS),也可以认为是一个观察者模式的实现,或者事件监听模式的实现。

在使用之前,首先说明disruptor主要功能加以说明,你可以理解为他是一种高效的"生产者-消费者"模型。也就性能远远高于传统的BlockingQueue容器。

在JDK的多线程与并发库一文中, 提到了BlockingQueue实现了生产者-消费者模型

BlockingQueue是基于锁实现的, 而锁的效率通常较低. 有没有使用CAS机制实现的生产者-消费者Disruptor就是这样。

Disruptor使用观察者模式, 主动将消息发送给消费者, 而不是等消费者从队列中取; 在无锁的情况下, 实现queue(环形, RingBuffer)的并发操作, 性能远高于BlockingQueue

2 Disruptor的设计方案

Disruptor通过以下设计来解决队列速度慢的问题:

环形数组结构

为了避免垃圾回收,采用数组而非链表。同时,数组对处理器的缓存机制更加友好。

元素位置定位

数组长度2^n,通过位运算,加快定位的速度。下标采取递增的形式。不用担心index溢出的问题。index是long类型,即使100万QPS的处理速度,也需要30万年才能用完。

无锁设计

每个生产者或者消费者线程,会先申请可以操作的元素在数组中的位置,申请到之后,直接在该位置写入或者读取数据。

下面忽略数组的环形结构,介绍一下如何实现无锁设计。整个过程通过原子变量CAS,保证操作的线程安全。

3 Disruptor实现特征

另一个关键的实现低延迟的细节就是在Disruptor中利用无锁的算法,所有内存的可见性和正确性都是利用内存屏障或者CAS操作。使用CAS来保证多线程安全,与大部分并发队列使用的锁相比,CAS显然要快很多。CAS是CPU级别的指令,更加轻量,不必像锁一样需要操作系统提供支持,所以每次调用不需要在用户态与内核态之间切换,也不需要上下文切换。

只有一个用例中锁是必须的,那就是BlockingWaitStrategy(阻塞等待策略),唯一的实现方法就是使用Condition实现消费者在新事件到来前等待。许多低延迟系统使用忙等待去避免Condition的抖动,然而在系统忙等待的操作中,性能可能会显著降低,尤其是在CPU资源严重受限的情况下,例如虚拟环境下的WEB服务器。

4 什么是ringbuffer

它是一个环(首尾相接的环),你可以把它用做在不同上下文(线程)间传递数据的buffer。

 

基本来说,ringbuffer拥有一个序号,这个序号指向数组中下一个可用的元素。(校对注:如下图右边的图片表示序号,这个序号指向数组的索引4的位置。)

 

随着你不停地填充这个buffer(可能也会有相应的读取),这个序号会一直增长,直到绕过这个环。

 

要找到数组中当前序号指向的元素,可以通过mod操作:

以上面的ringbuffer为例(java的mod语法):12 % 10 = 2。很简单吧。  事实上,上图中的ringbuffer只有10个槽完全是个意外。如果槽的个数是2的N次方更有利于基于二进制

优点

之所以ringbuffer采用这种数据结构,是因为它在可靠消息传递方面有很好的性能。这就够了,不过它还有一些其他的优点。

首先,因为它是数组,所以要比链表快,而且有一个容易预测的访问模式。(译者注:数组内元素的内存地址的连续性存储的)。这是对CPU缓存友好的—也就是说,在硬件级别,数组中的元素是会被预加载的,因此在ringbuffer当中,cpu无需时不时去主存加载数组中的下一个元素。(校对注:因为只要一个元素被加载到缓存行,其他相邻的几个元素也会被加载进同一个缓存行)

其次,你可以为数组预先分配内存,使得数组对象一直存在(除非程序终止)。这就意味着不需要花大量的时间用于垃圾回收。此外,不像链表那样,需要为每一个添加到其上面的对象创造节点对象—对应的,当删除节点时,需要执行相应的内存清理操作。

RingBuffer底层实现

RingBuffer是一个首尾相连的环形数组,所谓首尾相连,是指当RingBuffer上的指针越过数组是上界后,继续从数组头开始遍历。因此,RingBuffer中至少有一个指针,来表示RingBuffer中的操作位置。另外,指针的自增操作需要做并发控制,Disruptor和本文的OptimizedQueue都使用CAS的乐观并发控制来保证指针自增的原子性,关于乐观并发控制之后会着重介绍。

Disruptor中的RingBuffer上只有一个指针,表示当前RingBuffer上消息写到了哪里,此外,每个消费者会维护一个sequence表示自己在RingBuffer上读到哪里,从这个角度讲,Disruptor中的RingBuffer上实际有消费者数+1个指针。由于我们要实现的是一个单消息单消费的阻塞队列,只要维护一个读指针(对应消费者)和一个写指针(对应生产者)即可,无论哪个指针,每次读写操作后都自增一次,一旦越界,即从数组头开始继续读写

5 Disruptor的核心概念

先从了解 Disruptor 的核心概念开始,来了解它是如何运作的。下面介绍的概念模型,既是领域对象,也是映射到代码实现上的核心对象。

RingBuffer

如其名,环形的缓冲区。曾经 RingBuffer 是 Disruptor 中的最主要的对象,但从3.0版本开始,其职责被简化为仅仅负责对通过 Disruptor 进行交换的数据(事件)进行存储和更新。在一些更高级的应用场景中,Ring Buffer 可以由用户的自定义实现来完全替代。

SequenceDisruptor

通过顺序递增的序号来编号管理通过其进行交换的数据(事件),对数据(事件)的处理过程总是沿着序号逐个递增处理。一个 Sequence 用于跟踪标识某个特定的事件处理者(RingBuffer/Consumer )的处理进度。虽然一个 AtomicLong 也可以用于标识进度,但定义 Sequence 来负责该问题还有另一个目的,那就是防止不同的 Sequence 之间的CPU缓存伪共享(Flase Sharing)问题。(注:这是 Disruptor 实现高性能的关键点之一)。

Sequencer

Sequencer 是 Disruptor 的真正核心。此接口有两个实现类 SingleProducerSequencer、MultiProducerSequencer ,它们定义在生产者和消费者之间快速、正确地传递数据的并发算法。

Sequence Barrier

用于保持对RingBuffer的 main published Sequence 和Consumer依赖的其它Consumer的 Sequence 的引用。 Sequence Barrier 还定义了决定 Consumer 是否还有可处理的事件的逻辑。

Wait Strategy

定义 Consumer 如何进行等待下一个事件的策略。 (注:Disruptor 定义了多种不同的策略,针对不同的场景,提供了不一样的性能表现)

Event

在 Disruptor 的语义中,生产者和消费者之间进行交换的数据被称为事件(Event)。它不是一个被 Disruptor 定义的特定类型,而是由 Disruptor 的使用者定义并指定。

EventProcessor

EventProcessor 持有特定消费者(Consumer)的 Sequence,并提供用于调用事件处理实现的事件循环(Event Loop)。

EventHandler

Disruptor 定义的事件处理接口,由用户实现,用于处理事件,是 Consumer 的真正实现。

Producer

即生产者,只是泛指调用 Disruptor 发布事件的用户代码,Disruptor 没有定义特定接口或类型。

 

RingBuffer——Disruptor底层数据结构实现,核心类,是线程间交换数据的中转地;

Sequencer——序号管理器,负责消费者/生产者各自序号、序号栅栏的管理和协调;

Sequence——序号,声明一个序号,用于跟踪ringbuffer中任务的变化和消费者的消费情况;

SequenceBarrier——序号栅栏,管理和协调生产者的游标序号和各个消费者的序号,确保生产者不会覆盖消费者未来得及处理的消息,确保存在依赖的消费者之间能够按照正确的顺序处理;

EventProcessor——事件处理器,监听RingBuffer的事件,并消费可用事件,从RingBuffer读取的事件会交由实际的生产者实现类来消费;它会一直侦听下一个可用的序号,直到该序号对应的事件已经准备好。

EventHandler——业务处理器,是实际消费者的接口,完成具体的业务逻辑实现,第三方实现该接口;代表着消费者。

Producer——生产者接口,第三方线程充当该角色,producer向RingBuffer写入事件。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/657153.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何关闭电脑自动更新?一招教你永久关闭!

百度安全验证https://baijiahao.baidu.com/s?id1749271752443309717

《微服务架构设计模式》第三章 微服务架构中的进程间通信

内容总结自《微服务架构设计模式》 微服务架构中的进程间通信 一、通信概述通信方式API定义消息格式 二、同步通信RESTgRPC断路器服务发现 三、异步通信消息消息通道消息代理消息问题 ) 一、通信概述 通信方式 有很多进程间通信技术可供开发者选择。服务可以使用基于同步请求…

国产操作系统介绍和安装

国产操作系统 分类 操作系统分类国产操作系统银河麒麟中科方德统信UOS红旗Linux深度系统优麒麟系统 具体介绍 麒麟操作系统 麒麟操作系统(Kylin操作系统,简称麒麟OS),是一种国产操作系统,由国防科技大学研发&#x…

【Pandas】pandas用法解析(二)

一、生成数据表 二、数据表信息查看 三、数据表清洗 四、数据预处理 ———————————————— 目录 五、数据提取 1.按索引提取单行的数值 2.按索引提取区域行数值 3.重设索引 4.设置日期为索引 5.提取4日之前的所有数据 6.使用iloc按位置区域提取数据 7…

Java线程生命周期详解

前言一、线程的生命周期二、线程状态转换三、线程生命周期示例结束语 前言 Java中的线程生命周期是多线程开发的核心概念。了解线程的生命周期以及它们如何进行状态转换对于编写有效且无错误的多线程程序至关重要。 一、线程的生命周期 Java线程主要有以下几个状态&#xff…

离散数学题目收集整理练习(期末过关进度80%~100%)完结撒花

✨博主:命运之光 🦄专栏:离散数学考前复习(知识点题) 🍓专栏:概率论期末速成(一套卷) 🐳专栏:数字电路考前复习 🌟博主的其他文章&…

UG NX二次开发(C#)-外部模式-导出dwg格式文件

文章目录 1、前言2、在UG NX界面中导出DWG的操作2.1 打开三维模型2.2 创建二维工程制图2.3 导出工程图纸3、采用NXOpen(C#)二次开发实现1、前言 在我们实际使用过程中,经常会用到不同软件之间的数据转换,数据转换是通过通用标准文件来实现的。当然,在三维转二维过程中,dwg…

4.部署Placement服务

Placement服务是从nova服务中拆分出来的组件,Placement组件应该在 Nova之前安装; Placement服务用于跟踪节点资源(比如计算节点,存储资源池,网络资源池等)的使用情况,提供自定义资源的能力&…

CSS基础学习--14 Position(定位)

一、定义 position属性指定了元素的定位类型 position 属性的五个值: staticrelativefixedabsolutesticky 元素可以使用的顶部,底部,左侧和右侧属性定位。然而,这些属性无法工作,除非是先设定position属性。他们也有…

scratch lenet(1): 读写 pgm 图像文件

scratch lenet(1): 读写 pgm 图像文件 文章目录 scratch lenet(1): 读写 pgm 图像文件1. 目的2. pgm 格式介绍2.1 概要2.2 meta 信息2.3 像素内容 3. 创建 .pgm 文件4. 使用C语言读取 .pgm 灰度图文件4.1 实现4.2 解释 5. 使用C语言保存 .pgm 灰度图文件 1. 目的 最近在 githu…

车载软件架构 —— 闲聊几句AUTOSAR OS(四)

我是穿拖鞋的汉子,魔都中坚持长期主义的工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 没有人关注你。也无需有人关注你。你必须承认自己的价值,你不能站在他人的角度来反对自己。人生在世,最怕的就是把别人的眼光当成自己生活的唯一标准。到最…

初识Telegraf、InfluxDB和Grafana铁三角形成的监控可视化解决方案

文章目录 前言原始的监控靠人盯进化的监控靠批处理脚本高端的监控靠完整的可视化解决方案Telegraf、InfluxDB和Grafana铁三角TelegrafInfluxDBGrafana Grafana仪表板展示服务器资源总览负载和内存使用网络带宽磁盘IOIO延迟其他指标进程信息 总结 前言 数据监控目前用于各行各业…

Cracking C++(13): 读取不超过n个字符

文章目录 1. 目的2. 正确用法实例3. 纠正错误用法3.1 错误用法3.2 让 AddressSanitizer 告诉你错误3.3 解释 4. 总结 1. 目的 在读取 pgm 格式图像的 meta 信息时, 使用了 %2s 这个格式串, 之前不是很了解, 尝试后发现, 如果不小…

花上半小时帮你快速熟悉微服务架构

本文将介绍微服务架构和相关的组件,介绍他们是什么以及为什么要使用微服务架构和这些组件。本文侧重于简明地表达微服务架构的全局图景,因此不会涉及具体如何使用组件等细节。 要理解微服务,首先要先理解不是微服务的那些。通常跟微服务相对…

读发布!设计与部署稳定的分布式系统(第2版)笔记02_停飞的代码异常

1. 以前“计划内的停机”很正常,现在则不被接受 2. 高可用性架构 2.1. CF系统不会遇到任何常见的单点失效问题 2.1.1. 硬件的每一部分都有冗余 2.1.1.1. CPU 2.1.1.2. 驱动器 2.1.1.3. 网卡 2.1.1.4. 电源 2.1.1.5. 网络交换机 2.1.1.6. 风扇 2.1.2. 为了…

Redis哨兵模式的配置

1.环境准备 master节点1个slave节点2个sentinel【哨兵】节点3个redis版本5.0.3操作系统:Centos7 2.主从节点配置 创建redis-conf目录,此目录用于存放主从节点的配置文件 复制redis.conf,然后创建三个配置文件:redis-6379.conf&…

循环缓冲题目

题目:一环形缓冲区由 6 个缓冲区 0~5 组成,其中 Full 表示装满数据的缓冲区,Empty 表示空缓冲区。按照顺时针方向,指针 Pf 指向第一个 “满” 缓冲区,指针 Pe 指向第一个 “空” 缓冲区。进程 In 在 Pe 指示下不断向 E…

XSS数据接收网站——XSS在线平台

文章目录 前言使用步骤1、进入到xss在线平台主页2、创建项目3、生成攻击poc4、查看返回结果 前言 平台的网址是: 链接: XSS在线平台 使用步骤 1、进入到xss在线平台主页 2、创建项目 我的项目,点击创建,项目名称和描述随便填,…

Docker安装和使用,Docker拉取Mysql.

Docker Unbuntu安装dockerdocker的相关操作开启docker服务查看镜像搜索镜像拉取镜像删除镜像运行容器查看容器停止运行容器重新运行容器删除容器构建一个Docker镜像登陆Dockerhub提交镜像到dockerhub退出dockerhub进入正在运行的容器的交互式终端其他docker操作 docker拉取mysq…

qemu arm Linux 环境测试交叉编译的 glib 库 测试用例 tests

环境搭建 ubuntu 20.04 arm 平台交叉编译 glib 库 交叉编译 glib 库 glib 库 本身带有大量的测试用例 tests,分别在 glib 各个模块目录下的 tests 目录,如果是 ARM Linux 平台的交叉编译,可以开启 installed_tests 选项 开启 glib tests 测…