Java线程生命周期详解

news2024/9/27 9:27:21

  • 前言
    • 一、线程的生命周期
    • 二、线程状态转换
    • 三、线程生命周期示例
    • 结束语

前言

Java中的线程生命周期是多线程开发的核心概念。了解线程的生命周期以及它们如何进行状态转换对于编写有效且无错误的多线程程序至关重要。

一、线程的生命周期

Java线程主要有以下几个状态,这些状态定义在Thread.State枚举类中:

  1. 新建状态(New):当我们创建一个新的线程实例时,线程就处于新建状态。这时候线程的start()方法还未被调用,线程对象还未开始执行。在这个状态下,Java虚拟机(JVM)已经为此线程分配了必要的内存。

    Thread t = new Thread(); // 线程此时处于New状态
    
  2. 就绪状态(Runnable):当线程对象调用了start()方法后,该线程就处于就绪状态。就绪状态的线程在获得CPU时间片后就可以开始运行。这个状态的线程位于可运行线程池中,等待被线程调度选中,获得CPU的使用权。

    t.start(); // 线程此时处于Runnable状态
    
  3. 运行状态(Running):线程获取到CPU时间片后,就进入运行状态,开始执行run()方法中的代码。值得注意的是,代码执行的实际速度和效率与处理器的速度以及多核处理器的核数有关。

    public void run() {
        System.out.println("Thread is running.");
    }
    // 如果此时这个方法正在执行,那么线程就处于Running状态
    
  4. 阻塞状态(Blocked):当一个线程试图获取一个内部的对象锁(也就是进入一个synchronized块),而该锁被其他线程持有,则该线程进入阻塞状态。阻塞状态的线程在锁被释放时,将会进入就绪状态。

    synchronized(object) {
        // 如果此时object的锁被其他线程持有,那么线程就处于Blocked状态
    }
    
  5. 等待状态(Waiting):线程通过调用其自身的wait()方法、join()方法或LockSupport.park()方法,或者通过调用其他线程的join()方法,可以进入等待状态。在等待状态的线程不会被分配CPU时间片,它们只能通过被其他线程显式唤醒进入就绪状态。

    t.wait();  // 线程此时处于Waiting状态
    t.join();  // 线程此时处于Waiting状态
    
  6. 超时等待状态(Timed Waiting):当线程调用了sleep(long ms)wait(long ms)join(long ms),或者LockSupport.parkNanos(), LockSupport.parkUntil()等具有指定等待时间的方法,线程就会进入超时等待状态。当超时时间到达后,线程会自动返回到就绪状态。

    Thread.sleep(1000); // 线程此时处于Timed Waiting状态
    
  7. 终止状态(Terminated):当线程的run()方法执行完毕,或者线程中断,线程就会进入终止状态。在这个状态下,线程已经完成了它的全部工作。

    // 当run()方法执行完毕,线程处于Terminated状态
    public void run() {
        System.out.println("Thread is running.");
    }
    

这些状态之间的转换,通过各种方法的调用来实现。接下来我们将看到这些状态转换的具体情况。

二、线程状态转换

在这里插入图片描述

线程状态的转换是非常重要的一部分,了解状态之间的转换有助于我们更好地理解和掌握线程的行为。下面,我们来看看Java中各种线程状态的转换情况。

  1. 新建状态转就绪状态:当线程对象被创建后,其进入新建状态。此时,通过调用线程对象的start()方法,可以让线程进入就绪状态,等待系统的线程调度器进行调度。

    Thread t = new Thread(); // 新建状态
    t.start(); // 调用start()方法,线程进入就绪状态
    
  2. 就绪状态转运行状态:线程调度器从就绪队列中选择一个线程,分配给它CPU资源,这个线程就由就绪状态变为运行状态。

  3. 运行状态转就绪状态:当一个运行状态的线程调用了yield()方法,或者该线程的运行时间超过了系统规定的时间片,线程就会释放CPU资源,自己由运行状态变回就绪状态,重新等待系统调度。

    Thread.yield(); // 调用yield()方法,线程从运行状态进入就绪状态
    
  4. 运行状态转阻塞状态:当一个运行状态的线程试图获取一个被其他线程持有的对象锁时,该线程就会进入阻塞状态。

    synchronized(object) {
        // 如果此时object的锁被其他线程持有,那么线程就从运行状态进入阻塞状态
    }
    
  5. 阻塞状态转就绪状态:当一个阻塞状态的线程获取到了被其他线程释放的对象锁,该线程就由阻塞状态变为就绪状态,重新等待系统调度。

  6. 运行状态转等待状态:当一个运行状态的线程调用了wait()join()LockSupport.park()方法时,该线程就会进入等待状态。等待状态的线程需要依赖其他线程的通知才能够返回到就绪状态。

    t.wait(); // 调用wait()方法,线程从运行状态进入等待状态
    t.join(); // 调用join()方法,线程从运行状态进入等待状态
    
  7. 等待状态转就绪状态:当一个等待状态的线程被其他线程调用notify()notifyAll()唤醒,或者被其他线程中断,或者等待的时间到期,该线程就由等待状态转为就绪状态。

    t.notify(); // notify()方法被调用,线程从等待状态进入就绪状态
    
  8. 运行状态转超时等待状态:当一个运行状态的线程调用了具有超时参数的sleep()wait()join(),或LockSupport.parkNanos()LockSupport.parkUntil()方法时,该线程就会进入超时等待状态。

    Thread.sleep(1000); // 调用sleep()方法,线程从运行状态进入超时等待状态
    
  9. 超时等待状态转就绪状态:当一个超时等待状态的线程等待的时间到期,或者被其他线程唤醒或中断,该线程就由超时等待状态转为就绪状态。

  10. 任何状态转终止状态:当线程完成任务或者因异常退出时,就会进入终止状态。

通过了解以上线程的状态转换,可以更加深入理解线程的运行机制,为多线程编程提供理论基础。

三、线程生命周期示例

下面的Java代码实例演示了一个线程从创建到终止的整个过程:

// 创建一个继承了Thread类的ExampleThread类
class ExampleThread extends Thread {
    private Object lock; // 创建一个私有的Object对象,它将在同步代码块中被使用作为锁

    // 构造函数,接受一个Object类型的参数
    public ExampleThread(Object lock) {
        this.lock = lock; // 将传入的对象赋值给lock
    }

    // 重写Thread类的run方法
    @Override
    public void run() {
        // 同步代码块,只有获取到lock对象的锁才能执行
        synchronized(lock) {
            try {
                // 输出线程名和状态
                System.out.println(Thread.currentThread().getName() + " is running");
                // 让线程睡眠1秒,此时线程进入TIMED_WAITING状态
                Thread.sleep(1000);

                // 输出线程名和状态
                System.out.println(Thread.currentThread().getName() + " is waiting");
                // 调用wait()方法,线程释放lock锁,进入WAITING状态
                lock.wait();

                // 线程被唤醒,获取到lock锁,输出线程名和状态
                System.out.println(Thread.currentThread().getName() + " is running again");
            } catch (InterruptedException e) {
                // 线程被中断,输出线程名和状态,然后线程将结束
                System.out.println(Thread.currentThread().getName() + " is interrupted and will terminate");
            }
        }
    }
}

public class Main {
    public static void main(String[] args) throws InterruptedException {
        // 创建一个共享的锁对象
        Object lock = new Object();

        // 创建一个新的线程(NEW状态)
        Thread t1 = new ExampleThread(lock);
        System.out.println(t1.getName() + " is created");

        // 启动新的线程(READY/RUNNABLE状态)
        t1.start();

        // 让主线程睡眠2秒,这样新线程就可以先运行
        Thread.sleep(2000);

        // 唤醒等待的线程(将进入READY/RUNNABLE状态)
        synchronized(lock) {
            lock.notify();
        }

        // 让主线程再睡眠1秒,这样被唤醒的线程可以完成运行
        Thread.sleep(1000);
    }
}

这个代码示例演示了Java线程从创建(NEW状态),到就绪和运行(READY/RUNNABLE状态),再到等待(WAITING状态),被唤醒后再次运行,最后终止(TERMINATED状态)的整个过程。
以优化应用的性能。

结束语

希望以上内容能帮助你理解Java线程的生命周期。理解线程生命周期对于编写并发程序和进行多线程编程都十分重要。记住,最好的学习方法就是动手实践。因此,我鼓励大家自己动手尝试上述代码,更深入地理解线程生命周期的每个阶段。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/657143.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

离散数学题目收集整理练习(期末过关进度80%~100%)完结撒花

✨博主:命运之光 🦄专栏:离散数学考前复习(知识点题) 🍓专栏:概率论期末速成(一套卷) 🐳专栏:数字电路考前复习 🌟博主的其他文章&…

UG NX二次开发(C#)-外部模式-导出dwg格式文件

文章目录 1、前言2、在UG NX界面中导出DWG的操作2.1 打开三维模型2.2 创建二维工程制图2.3 导出工程图纸3、采用NXOpen(C#)二次开发实现1、前言 在我们实际使用过程中,经常会用到不同软件之间的数据转换,数据转换是通过通用标准文件来实现的。当然,在三维转二维过程中,dwg…

4.部署Placement服务

Placement服务是从nova服务中拆分出来的组件,Placement组件应该在 Nova之前安装; Placement服务用于跟踪节点资源(比如计算节点,存储资源池,网络资源池等)的使用情况,提供自定义资源的能力&…

CSS基础学习--14 Position(定位)

一、定义 position属性指定了元素的定位类型 position 属性的五个值: staticrelativefixedabsolutesticky 元素可以使用的顶部,底部,左侧和右侧属性定位。然而,这些属性无法工作,除非是先设定position属性。他们也有…

scratch lenet(1): 读写 pgm 图像文件

scratch lenet(1): 读写 pgm 图像文件 文章目录 scratch lenet(1): 读写 pgm 图像文件1. 目的2. pgm 格式介绍2.1 概要2.2 meta 信息2.3 像素内容 3. 创建 .pgm 文件4. 使用C语言读取 .pgm 灰度图文件4.1 实现4.2 解释 5. 使用C语言保存 .pgm 灰度图文件 1. 目的 最近在 githu…

车载软件架构 —— 闲聊几句AUTOSAR OS(四)

我是穿拖鞋的汉子,魔都中坚持长期主义的工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 没有人关注你。也无需有人关注你。你必须承认自己的价值,你不能站在他人的角度来反对自己。人生在世,最怕的就是把别人的眼光当成自己生活的唯一标准。到最…

初识Telegraf、InfluxDB和Grafana铁三角形成的监控可视化解决方案

文章目录 前言原始的监控靠人盯进化的监控靠批处理脚本高端的监控靠完整的可视化解决方案Telegraf、InfluxDB和Grafana铁三角TelegrafInfluxDBGrafana Grafana仪表板展示服务器资源总览负载和内存使用网络带宽磁盘IOIO延迟其他指标进程信息 总结 前言 数据监控目前用于各行各业…

Cracking C++(13): 读取不超过n个字符

文章目录 1. 目的2. 正确用法实例3. 纠正错误用法3.1 错误用法3.2 让 AddressSanitizer 告诉你错误3.3 解释 4. 总结 1. 目的 在读取 pgm 格式图像的 meta 信息时, 使用了 %2s 这个格式串, 之前不是很了解, 尝试后发现, 如果不小…

花上半小时帮你快速熟悉微服务架构

本文将介绍微服务架构和相关的组件,介绍他们是什么以及为什么要使用微服务架构和这些组件。本文侧重于简明地表达微服务架构的全局图景,因此不会涉及具体如何使用组件等细节。 要理解微服务,首先要先理解不是微服务的那些。通常跟微服务相对…

读发布!设计与部署稳定的分布式系统(第2版)笔记02_停飞的代码异常

1. 以前“计划内的停机”很正常,现在则不被接受 2. 高可用性架构 2.1. CF系统不会遇到任何常见的单点失效问题 2.1.1. 硬件的每一部分都有冗余 2.1.1.1. CPU 2.1.1.2. 驱动器 2.1.1.3. 网卡 2.1.1.4. 电源 2.1.1.5. 网络交换机 2.1.1.6. 风扇 2.1.2. 为了…

Redis哨兵模式的配置

1.环境准备 master节点1个slave节点2个sentinel【哨兵】节点3个redis版本5.0.3操作系统:Centos7 2.主从节点配置 创建redis-conf目录,此目录用于存放主从节点的配置文件 复制redis.conf,然后创建三个配置文件:redis-6379.conf&…

循环缓冲题目

题目:一环形缓冲区由 6 个缓冲区 0~5 组成,其中 Full 表示装满数据的缓冲区,Empty 表示空缓冲区。按照顺时针方向,指针 Pf 指向第一个 “满” 缓冲区,指针 Pe 指向第一个 “空” 缓冲区。进程 In 在 Pe 指示下不断向 E…

XSS数据接收网站——XSS在线平台

文章目录 前言使用步骤1、进入到xss在线平台主页2、创建项目3、生成攻击poc4、查看返回结果 前言 平台的网址是: 链接: XSS在线平台 使用步骤 1、进入到xss在线平台主页 2、创建项目 我的项目,点击创建,项目名称和描述随便填,…

Docker安装和使用,Docker拉取Mysql.

Docker Unbuntu安装dockerdocker的相关操作开启docker服务查看镜像搜索镜像拉取镜像删除镜像运行容器查看容器停止运行容器重新运行容器删除容器构建一个Docker镜像登陆Dockerhub提交镜像到dockerhub退出dockerhub进入正在运行的容器的交互式终端其他docker操作 docker拉取mysq…

qemu arm Linux 环境测试交叉编译的 glib 库 测试用例 tests

环境搭建 ubuntu 20.04 arm 平台交叉编译 glib 库 交叉编译 glib 库 glib 库 本身带有大量的测试用例 tests,分别在 glib 各个模块目录下的 tests 目录,如果是 ARM Linux 平台的交叉编译,可以开启 installed_tests 选项 开启 glib tests 测…

2.pixi.js编写的塔防游戏(类似保卫萝卜)-场景编辑器

游戏说明 一个用pixi.js编写的h5塔防游戏,可以用electron打包为exe,支持移动端,也可以用webview控件打包为app在移动端使用 环境说明 cnpm6.2.0 npm6.14.13 node12.22.7 npminstall3.28.0 yarn1.22.10 npm config list electron_mirr…

一种正弦信号叠加高频噪声的信号基频率准确测量方法

1.问题 当信号叠加有高频噪声时,特别是类似有变频器这类强干扰源存在的情况下,如何测得信号的准确频率,是个问题。FFT要求长时间采样,对于嵌入式应用,采样点数和时间消耗都是个问题。而即使用示波器的波形叠加功能&…

Debian12 U盘安装

今天买了一个蓝牙适配器,想着在我的Centos7上把这个蓝牙使用起来,但遗憾的是即使经过淘宝客服的远程操作也无法正常使用起来,原因是我的Centos版本太低,有些头文件缺失内容导致编译不过,然后蓝牙驱动无法正常安装。在客…

【八】spring boot集成数据库连接池druid

spring boot集成数据库连接池druid 最近在进行程序优化的过程中发现程序瓶颈在数据库连接这块,于是开始研究怎么对数据库连接池参数进行调优,在这个过程中发现很多人使用druid很不规范,经常会出现导入的包和配置参数不对应的情况,…

Mybatis-Plus《学习笔记(22版尚硅谷)》

一、MyBatis-Plus 1.简介 MyBatis-Plus (opens new window)(简称 MP)是一个 MyBatis (opens new window)的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发、提高效率而生。 我们的愿景是成为 MyBatis 最好的搭档&…