Word2Vec详解

news2025/1/23 17:41:49

Word2Vec

基本思想:通过训练将每一个词映射成一个固定长度的向量,所有向量构成一个词向量空间,每一个向量(单词)可以看作是向量空间中的一个点,意思越相近的单词距离越近。

在这里插入图片描述

如何把词转换为向量?

通常情况下,我们可以维护一个查询表。表中每一行都存储了一个特定词语的向量值,每一列的第一个元素都代表着这个词本身,以便于我们进行词和向量的映射(如“我”对应的向量值为 [0.3,0.5,0.7,0.9,-0.2,0.03] )。给定任何一个或者一组单词,我们都可以通过查询这个excel,实现把单词转换为向量的目的,这个查询和替换过程称之为Embedding Lookup。

在这里插入图片描述

然而在进行神经网络计算的过程中,需要大量的算力,常常要借助特定硬件(如GPU)满足训练速度的需求。GPU上所支持的计算都是以张量(Tensor)为单位展开的,因此在实际场景中,我们需要把Embedding Lookup的过程转换为张量计算:

在这里插入图片描述

如何让向量具有语义信息?

在自然语言处理研究中,科研人员通常有一个共识:使用一个单词的上下文来了解这个单词的语义,比如:

“苹果手机质量不错,就是价格有点贵。”
“这个苹果很好吃,非常脆。”
“菠萝质量也还行,但是不如苹果支持的APP多。”

在上面的句子中,我们通过上下文可以推断出第一个“苹果”指的是苹果手机,第二个“苹果”指的是水果苹果,而第三个“菠萝”指的应该也是一个手机。在自然语言处理领域,使用上下文描述一个词语或者元素的语义是一个常见且有效的做法。我们可以使用同样的方式训练词向量,让这些词向量具备表示语义信息的能力。

2013年,Mikolov提出的经典word2vec算法就是通过上下文来学习语义信息。word2vec包含两个经典模型:CBOW(Continuous Bag-of-Words)和Skip-gram。

CBOW:通过上下文的词向量推理中心词。
Skip-gram:根据中心词推理上下文。

在这里插入图片描述

CBOW模型

在这里插入图片描述

输入层: 一个形状为C×V的one-hot张量,其中C代表上下文中词的个数,通常是一个偶数,我们假设为4;V表示词表大小,我们假设为5000,该张量的每一行都是一个上下文词的one-hot向量表示。
隐藏层: 一个形状为V×N的参数张量W1,一般称为word-embedding,N表示每个词的词向量长度,我们假设为128。输入张量和word embedding W1进行矩阵乘法,就会得到一个形状为C×N的张量。综合考虑上下文中所有词的信息去推理中心词,因此将上下文中C个词相加得一个1×N的向量,是整个上下文的一个隐含表示。
输出层: 创建另一个形状为N×V的参数张量,将隐藏层得到的1×N的向量乘以该N×V的参数张量,得到了一个形状为1×V的向量。最终,1×V的向量代表了使用上下文去推理中心词,每个候选词的打分,再经过softmax函数的归一化,即得到了对中心词的推理概率:

在这里插入图片描述

Skip-gram模型

在这里插入图片描述

**Input Layer(输入层):**接收一个one-hot张量 V∈R1×vocab_size
作为网络的输入,假设vocab_size为5000。
**Hidden Layer(隐藏层):**将张量V乘以一个word embedding张量W1∈Rvocab_size×embed_size ,假设embed_size为128,并把结果作为隐藏层的输出,得到一个形状为R1×embed_size的张量,里面存储着当前句子中心词的词向量。
**Output Layer(输出层):**将隐藏层的结果乘以另一个word embedding张量W2∈Rembed_size×vocab_size,得到一个形状为R1×vocab_size的张量。这个张量经过softmax变换后,就得到了使用当前中心词对上下文的预测结果。根据这个softmax的结果,我们就可以去训练词向量模型。

Skip-gram在实际操作中,使用一个滑动窗口(一般情况下,长度是奇数),从左到右开始扫描当前句子。每个扫描出来的片段被当成一个小句子,每个小句子中间的词被认为是中心词,其余的词被认为是这个中心词的上下文。

Skip-gram实现

1.数据处理:

首先下载数据集处理语料,

# 下载语料用来训练word2vec
download()
# 读取text8数据
corpus = load_text8()
# 对语料进行预处理(分词)并把所有英文字符都转换为小写
corpus = data_preprocess(corpus)
# 构造词典,统计每个词的频率,并根据频率将每个词转换为一个整数id
word2id_freq, word2id_dict, id2word_dict = build_dict(corpus)
vocab_size = len(word2id_freq)
#保存word2id_freq, word2id_dict, id2word_dict到本地
f_save = open('word2id_freq.pkl', 'wb')
pickle.dump(word2id_freq, f_save)
f_save.close()
f_save = open('word2id_dict.pkl', 'wb')
pickle.dump(word2id_dict, f_save)
f_save.close()
f_save = open('id2word_dict.pkl', 'wb')
pickle.dump(id2word_dict, f_save)
f_save.close()
# 把语料转换为id序列
corpus = convert_corpus_to_id(corpus, word2id_dict)
# 使用二次采样算法(subsampling)处理语料,强化训练效果,遗弃频率高的词
corpus = subsampling(corpus, word2id_freq)

构造数据,假设有一个中心词c和一个上下文词正样本tp。在Skip-gram的理想实现里,需要最大化使用c推理tp的概率。在使用softmax学习时,需要最大化tp的推理概率,同时最小化其他词表中词的推理概率。之所以计算缓慢,是因为需要对词表中的所有词都计算一遍。然而我们还可以使用另一种方法,就是随机从词表中选择几个代表词,通过最小化这几个代表词的概率,去近似最小化整体的预测概率。比如,先指定一个中心词(如“人工”)和一个目标词正样本(如“智能”),再随机在词表中采样几个目标词负样本(如“日本”,“喝茶”等)。对于目标词正样本,我们需要最大化它的预测概率;对于目标词负样本,我们需要最小化它的预测概率。通过这种方式,我们就可以完成计算加速。上述做法,我们称之为负采样。实现如下:

# 构造数据,准备模型训练
# max_window_size代表了最大的window_size的大小,程序会根据max_window_size从左到右扫描整个语料
# negative_sample_num代表了对于每个正样本,我们需要随机采样多少负样本用于训练,
# 一般来说,negative_sample_num的值越大,训练效果越稳定,但是训练速度越慢。
def build_data(corpus, word2id_dict, word2id_freq, max_window_size=3, negative_sample_num=4):
    # 使用一个list存储处理好的数据
    dataset = []

    # 从左到右,开始枚举每个中心点的位置
    for center_word_idx in range(len(corpus)):
        # 以max_window_size为上限,随机采样一个window_size,这样会使得训练更加稳定
        window_size = random.randint(1, max_window_size)
        # 当前的中心词就是center_word_idx所指向的词
        center_word = corpus[center_word_idx]

        # 以当前中心词为中心,左右两侧在window_size内的词都可以看成是正样本
        positive_word_range = (
        max(0, center_word_idx - window_size), min(len(corpus) - 1, center_word_idx + window_size))
        positive_word_candidates = [corpus[idx] for idx in range(positive_word_range[0], positive_word_range[1] + 1) if
                                    idx != center_word_idx]

        # 对于每个正样本来说,随机采样negative_sample_num个负样本,用于训练
        for positive_word in positive_word_candidates:
            # 首先把(中心词,正样本,label=1)的三元组数据放入dataset中,
            # 这里label=1表示这个样本是个正样本
            dataset.append((center_word, positive_word, 1))

            # 开始负采样
            i = 0
            while i < negative_sample_num:
                negative_word_candidate = random.randint(0, vocab_size - 1)

                if negative_word_candidate not in positive_word_candidates:
                    # 把(中心词,正样本,label=0)的三元组数据放入dataset中,
                    # 这里label=0表示这个样本是个负样本
                    dataset.append((center_word, negative_word_candidate, 0))
                    i += 1
    return dataset

2.网络定义

import paddle
from paddle.nn import Embedding
import paddle.nn.functional as F
import paddle.nn as nn

#定义skip-gram训练网络结构
#使用paddlepaddle的2.0.0版本
#一般来说,在使用paddle训练的时候,我们需要通过一个类来定义网络结构,这个类继承了paddle.nn.layer
class SkipGram(nn.Layer):
    def __init__(self, vocab_size, embedding_size, init_scale=0.1):
        # vocab_size定义了这个skipgram这个模型的词表大小
        # embedding_size定义了词向量的维度是多少
        # init_scale定义了词向量初始化的范围,一般来说,比较小的初始化范围有助于模型训练
        super(SkipGram, self).__init__()
        self.vocab_size = vocab_size
        self.embedding_size = embedding_size

        # 使用Embedding函数构造一个词向量参数
        # 这个参数的大小为:[self.vocab_size, self.embedding_size]
        # 数据类型为:float32
        # 这个参数的初始化方式为在[-init_scale, init_scale]区间进行均匀采样
        self.embedding = Embedding(
            num_embeddings = self.vocab_size,
            embedding_dim = self.embedding_size,
            weight_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Uniform(
                    low=-init_scale, high=init_scale)))

        # 使用Embedding函数构造另外一个词向量参数
        # 这个参数的大小为:[self.vocab_size, self.embedding_size]
        # 这个参数的初始化方式为在[-init_scale, init_scale]区间进行均匀采样
        self.embedding_out = Embedding(
            num_embeddings = self.vocab_size,
            embedding_dim = self.embedding_size,
            weight_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Uniform(
                    low=-init_scale, high=init_scale)))

    # 定义网络的前向计算逻辑
    # center_words是一个tensor(mini-batch),表示中心词
    # target_words是一个tensor(mini-batch),表示目标词
    # label是一个tensor(mini-batch),表示这个词是正样本还是负样本(用01表示)
    # 用于在训练中计算这个tensor中对应词的同义词,用于观察模型的训练效果
    def forward(self, center_words, target_words, label):
        # 首先,通过self.embedding参数,将mini-batch中的词转换为词向量
        # 这里center_words和eval_words_emb查询的是一个相同的参数
        # 而target_words_emb查询的是另一个参数
        center_words_emb = self.embedding(center_words)
        target_words_emb = self.embedding_out(target_words)

        # 我们通过点乘的方式计算中心词到目标词的输出概率,并通过sigmoid函数估计这个词是正样本还是负样本的概率。
        word_sim = paddle.multiply(center_words_emb, target_words_emb)
        word_sim = paddle.sum(word_sim, axis=-1)
        word_sim = paddle.reshape(word_sim, shape=[-1])
        pred = F.sigmoid(word_sim)

        # 通过估计的输出概率定义损失函数,注意我们使用的是binary_cross_entropy_with_logits函数
        # 将sigmoid计算和cross entropy合并成一步计算可以更好的优化,所以输入的是word_sim,而不是pred
        loss = F.binary_cross_entropy_with_logits(word_sim, label)
        loss = paddle.mean(loss)

        # 返回前向计算的结果,飞桨会通过backward函数自动计算出反向结果。
        return pred, loss

3.网络训练:

# 开始训练,定义一些训练过程中需要使用的超参数
batch_size = 512
epoch_num = 3
embedding_size = 200
step = 0
learning_rate = 0.001


# 定义一个使用word-embedding查询同义词的函数
# 这个函数query_token是要查询的词,k表示要返回多少个最相似的词,embed是我们学习到的word-embedding参数
# 我们通过计算不同词之间的cosine距离,来衡量词和词的相似度
# 具体实现如下,x代表要查询词的Embedding,Embedding参数矩阵W代表所有词的Embedding
# 两者计算Cos得出所有词对查询词的相似度得分向量,排序取top_k放入indices列表
def get_similar_tokens(query_token, k, embed):
    W = embed.numpy()
    x = W[word2id_dict[query_token]]
    cos = np.dot(W, x) / np.sqrt(np.sum(W * W, axis=1) * np.sum(x * x) + 1e-9)
    flat = cos.flatten()
    indices = np.argpartition(flat, -k)[-k:]
    indices = indices[np.argsort(-flat[indices])]
    for i in indices:
        print('for word %s, the similar word is %s' % (query_token, str(id2word_dict[i])))


# 通过我们定义的SkipGram类,来构造一个Skip-gram模型网络
skip_gram_model = SkipGram(vocab_size, embedding_size)

# 构造训练这个网络的优化器
adam = paddle.optimizer.Adam(learning_rate=learning_rate, parameters=skip_gram_model.parameters())

# 使用build_batch函数,以mini-batch为单位,遍历训练数据,并训练网络
for center_words, target_words, label in build_batch(
        dataset, batch_size, epoch_num):
    # 使用paddle.to_tensor,将一个numpy的tensor,转换为飞桨可计算的tensor
    center_words_var = paddle.to_tensor(center_words)
    target_words_var = paddle.to_tensor(target_words)
    label_var = paddle.to_tensor(label)

    # 将转换后的tensor送入飞桨中,进行一次前向计算,并得到计算结果
    pred, loss = skip_gram_model(
        center_words_var, target_words_var, label_var)

    # 程序自动完成反向计算
    loss.backward()
    # 程序根据loss,完成一步对参数的优化更新
    adam.step()
    # 清空模型中的梯度,以便于下一个mini-batch进行更新
    adam.clear_grad()

    # 每经过100个mini-batch,打印一次当前的loss,看看loss是否在稳定下降
    step += 1
    if step % 1000 == 0:
        print("step %d, loss %.3f" % (step, loss.numpy()[0]))

    # 每隔10000步,打印一次模型对以下查询词的相似词,这里我们使用词和词之间的向量点积作为衡量相似度的方法,只打印了5个最相似的词并保存网络模型参数和优化器模型参数
    if step % 10000 == 0:
        get_similar_tokens('movie', 5, skip_gram_model.embedding.weight)
        get_similar_tokens('one', 5, skip_gram_model.embedding.weight)
        get_similar_tokens('chip', 5, skip_gram_model.embedding.weight)
        paddle.save(skip_gram_model.state_dict(), "text8.pdparams")
        paddle.save(adam.state_dict(), "adam.pdopt")

在这里插入图片描述
这里step到300000我就结束训练了,可以看到词性已经很接近了。

4.测试训练模型

训练完成后,对任意词都可以基于我们训练出模型计算出跟这个词最接近的词。

# 定义一些训练过程中需要使用的超参数
embedding_size = 200
learning_rate = 0.001

# 通过我们定义的SkipGram类,来构造一个Skip-gram模型网络

skip_gram_model = SkipGram(vocab_size, embedding_size)

# 构造训练这个网络的优化器
adam = paddle.optimizer.Adam(learning_rate=learning_rate, parameters=skip_gram_model.parameters())

# 加载网络模型和优化器模型
layer_state_dict = paddle.load("./my_model/text8.pdparams")
opt_state_dict = paddle.load("./my_model/adam.pdopt")

skip_gram_model.set_state_dict(layer_state_dict)
adam.set_state_dict(opt_state_dict)

# get_similar_tokens('movie', 5, skip_gram_model.embedding.weight)
# get_similar_tokens('one', 5, skip_gram_model.embedding.weight)
# get_similar_tokens('chip', 5, skip_gram_model.embedding.weight)
get_similar_tokens('she', 5, skip_gram_model.embedding.weight)
get_similar_tokens('dog', 5, skip_gram_model.embedding.weight)
get_similar_tokens('apple', 5, skip_gram_model.embedding.weight)
get_similar_tokens('beijing', 5, skip_gram_model.embedding.weight)

结果如下,我没有完全训练完,可以看到效果还可以。

在这里插入图片描述

源码已经上传到GitHub上,github链接:https://github.com/fakerst/Word2Vec-SkipGram 网络有些差,后续会把训练好的模型也进行上传。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/59310.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

用Python做个学生管理系统,这不简简单单

前言 最近因为疫情&#xff0c;各大高校都开始放假了&#xff0c;要不就是回家上网课 我朋友的老师真有趣&#xff0c;硬是要我朋友做个学生管理系统打包成exe文件发给他&#xff0c;才能回家 这不就找上我来了&#xff0c;我写完就顺便发篇文章咯 准备工作 环境准备 Pyth…

Java基于springboot+vue的保健用品销售购物商城系统 前后端分离

随着人们生活水平的提高&#xff0c;人们对日常的保健工作也越来越重视&#xff0c;如何拥有一个更加健康的体魄成为当下很多人的一个追求&#xff0c;尤其是我国当下人口老龄化验证&#xff0c;老人因为身体机能的下降所以也要经常补充一些蛋白核矿物质。当下的年轻人也因为生…

【Java】ArrayList扩容规则

文章目录初始大小扩容规则总结初始大小 ArrayList的初始大小由你选定的构造函数决定&#xff0c;如果你使用无参构造函数&#xff0c;那么初始大小为0&#xff0c;是一个空数组。 而如果你选用有参数的构造函数&#xff0c;那么初始大小为你输入的大小 因此如果问你ArrayLis…

[附源码]计算机毕业设计基于springboot的4s店车辆管理系统

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

货架穿梭车控制方案

穿梭车控制系统结构示意图 系统组成结构示意图穿梭车服务端模块 PLC设备输出的控制客户端4个电机动作的开关量信号 共8个开关量信号&#xff0c;PNP电路接口,接线端子Q3.0&#xff5e;Q3.7&#xff1b;每个继电器由两个开关量的值共同作用&#xff0c;其控制表如下&#xff1a…

黑马程序员课程SpringMVC听课笔记

目录 SpringMVC概述 入门案例 使用Servlet技术开发web程序流程 使用SpringMVC技术开发web程序流程 导入pom.xml文件 UserController SpringMvcConfig ServletContainersInitConfig POST请求中文乱码处理 代参数GET请求 请求参数与传递 普通参数&#xff1a;请求参数名…

python -- PyQt5(designer)中文详细教程(一)Qt的基本功能

在介绍PyQt5中文详细教程前&#xff0c;如有需要安装PyQt5的同学可以在此 PyQt5安装详细教程_M_Q_T的博客-CSDN博客参考安装&#xff0c;里面有详细的安装内容。 下一章内容python -- PyQt5&#xff08;designer&#xff09;中文详细教程(二)菜单和工具栏 ​​​​​​​http:…

技术人员创业的第一步分析

概述&#xff1a;看完了本文&#xff0c;基本上可以了解确认自己所掌握的技术是否适合创业&#xff0c;如果不适合&#xff0c;不如找个大公司长期停留&#xff0c;也挺好的&#xff0c;免得折腾&#xff01;————————————————————前几天和一个朋友聊天&…

资源管理的部分

估算资源的活动的资源目录概述需求&#xff1a;设计思路实现思路分析1.估算的资源的资源的分解结构&#xff1a;获取资源2.虚拟团队3.CPO模型4.团队的5.资源日历建设团队团队一般成长规律形成 指导型管理风格认可奖励培训指标管理团队关于授权情商&#xff0c;领导力等控制资源…

排障必用的4款工具,帮你缩减排障时间!-网络工程师

Zen Load Balancer Zen Load Balancer是一个基于 Debian 的发行版&#xff0c;主要用于实现 TCP 的负载均衡。如果你在工作中遇到需要服务器负载均衡的功能&#xff0c;但又没有预算的时候&#xff0c;这个工具就能帮到你了。 可通过定制的脚本来检查后端的运行状态&#xff0c…

【java】3-获取线程引用与线程的属性

1.获取线程的引用 在创建一个线程之后&#xff0c;我们很有必要去获取当前线程实例的引用&#xff0c;以便能够观察到线程的一些属性&#xff0c;或是对于当前线程进行一系列的操作 调用Thread类的静态方法currentThread&#xff0c;我们便能拿到当前线程的引用 Thread.curr…

软件项目尾期,客户提新需求怎么办?

1、需求管理流程很关键 面对客户的需求要求&#xff0c;需求管理流程很关键。 在前期与用户签订合同时&#xff0c;可以增加一些相关条款&#xff0c;如限定用户提出需求变更的时间&#xff0c;规定何种情况的变更可以接受、拒绝接受或部分接受&#xff0c;还可以规定发生需求变…

[论文阅读] 颜色迁移-Linear Monge-Kantorovitch(MKL)

[论文阅读] 颜色迁移-Linear Monge-Kantorovitch(MKL) 文章: The Linear Monge-Kantorovitch Linear Colour Mapping for Example-Based Colour Transfer, [paper], [matlab代码] 1-算法原理 本文将颜色迁移变成数据分布的转换问题, 因而本文需要解决2个方面的问题, 如何描述…

Kettle BIGNUMBER TIMESTAMP 类型格式处理

一、问题描述 Kettle默认的格式化处理对BIGNUMBER列 ,把0 会强行写成0.0;对TIMESTAMP列强行写成如2021/12/31 16:51:55.000000000格式。从而引起不必要错误。 二、解决方案 最新的Kettle下载地址:https://udomain.dl.sourceforge.net/project/pentaho/Pentaho-9.3/client…

算法常见技巧 -快速幂及其相关应用

快速幂 题目 快速幂 典型题例&#xff1a; 给定 n 组 aia_iai​, bib_ibi​, pip_ipi​&#xff0c;对于每组数据&#xff0c;求出 aiba_i^baib​ modmodmod pip_ipi​的值。 示例 &#xff1a; 2 3 2 5 4 3 9思路 代码&#xff1a; /* 核心思路&#xff1a;反复平方法 …

【大数据入门核心技术-Hadoop】Hadoop非高可用集群搭建

目录 目录 一、Hadoop部署的三种方式 1、Standalone mode&#xff08;独立模式&#xff09; 2、Pseudo-Distributed mode&#xff08;伪分布式模式&#xff09; 3、Cluster mode&#xff08;集群模式&#xff09; 二、准备工作 1、/etc/hosts 2、关闭防火墙和禁用swap交…

计算机软考高项(信息系统项目管理师)、中项(系统集成项目管理工程师),统计师中级的一些备考经验

软考高项及中项 对于因各种原因需要拿工程系列职称的朋友&#xff0c;计算机软考高项和中项可能是性价比最高的副高级职称和中级职称&#xff0c;没有学历和工作经验的要求&#xff0c;是水平考试&#xff0c;即可以跳过初级、中级&#xff0c;直接考高级&#xff0c;也可以考…

[附源码]JAVA毕业设计九宫格日志网站(系统+LW)

[附源码]JAVA毕业设计九宫格日志网站&#xff08;系统LW&#xff09; 目运行 环境项配置&#xff1a; Jdk1.8 Tomcat8.5 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&a…

# 智慧社区管理系统-核心信息管理-02物业收费管理

一 后端 1:entity package com.woniu.community.entity;import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor;Data AllArgsConstructor NoArgsConstructor public class PropertyInfo {private int id;private int typeId;private Doub…

制作php的composer包

目录 1、初始化包 2、将代码推送到github远程仓库 3、为写好扩展包打上tag标签标记当前代码版本 4、将包发布到包管理平台 初始化包&#xff0c;生成 创建配置文件composer.json composer init composer init 按照引导就可以生成了 , 详细的引导解释如下 This command wil…