​​【项目实战】犬只牵绳智能识别:源码详细解读与部署步骤

news2024/12/4 1:21:52

1.识别效果展示

2.png

3.png

2.视频演示

[YOLOv7]基于YOLOv7的犬只牵绳检测系统(源码&部署教程)_哔哩哔哩_bilibili

3.YOLOv7算法简介

YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器

并在 V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。
相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高出 0.7%。
5.png

此外, YOLOv7 的在速度和精度上的表现也优于 YOLOR、YOLOX、Scaled-YOLOv4、YOLOv5、DETR 等多种目标检测器。

4.YOLOv7 技术方法

近年来,实时目标检测器仍在针对不同的边缘设备进行开发。例如,MCUNet 和 NanoDet 的开发专注于生产低功耗单芯片并提高边缘 CPU 的推理速度;YOLOX、YOLOR 等方法专注于提高各种 GPU 的推理速度;实时目标检测器的发展集中在高效架构的设计上;在 CPU 上使用的实时目标检测器的设计主要基于 MobileNet、ShuffleNet 或 GhostNet;为 GPU 开发的实时目标检测器则大多使用 ResNet、DarkNet 或 DLA,并使用 CSPNet 策略来优化架构。

YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。

对于模型重参数化,该研究使用梯度传播路径的概念分析了适用于不同网络层的模型重参数化策略,并提出了有计划的重参数化模型。此外,研究者发现使用动态标签分配技术时,具有多个输出层的模型在训练时会产生新的问题:「如何为不同分支的输出分配动态目标?」针对这个问题,研究者提出了一种新的标签分配方法,称为从粗粒度到细粒度(coarse-to-fine)的引导式标签分配。

该研究的主要贡献包括:

(1) 设计了几种可训练的 bag-of-freebies 方法,使得实时目标检测可以在不增加推理成本的情况下大大提高检测精度;

(2) 对于目标检测方法的演进,研究者发现了两个新问题:一是重参数化的模块如何替换原始模块,二是动态标签分配策略如何处理分配给不同输出层的问题,并提出了解决这两个问题的方法;

(3) 提出了实时目标检测器的「扩充(extend)」和「复合扩展(compound scale)」方法,以有效地利用参数和计算;

(4) 该研究提出的方法可以有效减少 SOTA 实时目标检测器约 40% 的参数和 50% 的计算量,并具有更快的推理速度和更高的检测精度。

在大多数关于设计高效架构的文献中,人们主要考虑的因素包括参数的数量、计算量和计算密度。下图 2(b)中 CSPVoVNet 的设计是 VoVNet 的变体。CSPVoVNet 的架构分析了梯度路径,以使不同层的权重能够学习更多不同的特征,使推理更快、更准确。图 2 © 中的 ELAN 则考虑了「如何设计一个高效网络」的问题。

YOLOv7 研究团队提出了基于 ELAN 的扩展 E-ELAN,其主要架构如图所示。
6.png
新的 E-ELAN 完全没有改变原有架构的梯度传输路径,其中使用组卷积来增加添加特征的基数(cardinality),并以 shuffle 和 merge cardinality 的方式组合不同组的特征。这种操作方式可以增强不同特征图学得的特征,改进参数的使用和计算效率。

无论梯度路径长度和大规模 ELAN 中计算块的堆叠数量如何,它都达到了稳定状态。如果无限堆叠更多的计算块,可能会破坏这种稳定状态,参数利用率会降低。新提出的 E-ELAN 使用 expand、shuffle、merge cardinality 在不破坏原有梯度路径的情况下让网络的学习能力不断增强。

在架构方面,E-ELAN 只改变了计算块的架构,而过渡层(transition layer)的架构完全没有改变。YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的计算块学习更多样化的特征。
因此,对基于串联的模型,我们不能单独分析不同的扩展因子,而必须一起考虑。该研究提出图 (c),即在对基于级联的模型进行扩展时,只需要对计算块中的深度进行扩展,其余传输层进行相应的宽度扩展。这种复合扩展方法可以保持模型在初始设计时的特性和最佳结构。

此外,该研究使用梯度流传播路径来分析如何重参数化卷积,以与不同的网络相结合。下图展示了该研究设计的用于 PlainNet 和 ResNet 的「计划重参数化卷积」。
7.png

5.数据集的准备

标注收集到的图片制作YOLO格式数据集

11.png
自己创建一个myself.yaml文件用来配置路径,路径格式与之前的V5、V6不同,只需要配置txt路径就可以
8.png

9.png
train-list.txt和val-list.txt文件里存放的都是图片的绝对路径(也可以放入相对路径)
12.png
如何获取图像的绝对路径,脚本写在下面了(也可以获取相对路径)

# From Mr. Dinosaur
 
import os
 
 
def listdir(path, list_name):  # 传入存储的list
    for file in os.listdir(path):
        file_path = os.path.join(path, file)
        if os.path.isdir(file_path):
            listdir(file_path, list_name)
        else:
            list_name.append(file_path)
 
 
list_name = []
path = 'D:/PythonProject/data/'  # 文件夹路径
listdir(path, list_name)
print(list_name)
 
with open('./list.txt', 'w') as f:  # 要存入的txt
    write = ''
    for i in list_name:
        write = write + str(i) + '\n'
    f.write(write)

6.训练过程

运行train.py

train文件还是和V5一样,为了方便,我将需要用到的文件放在了根目录下
13.png

路径修改完之后右击运行即可
14.png

经过漫长的训练过程,YOLOv7相比YOLOv5训练更吃配置尤其是显存,实测GPU 3080ti训练长达40小时以上,建议电脑显存8G以下的谨慎尝试,可能训练的过程低配置的电脑会出现蓝屏等现象皆为显卡过载,使用本文提供的训练好的权重进行预测则不吃配置,CPU也能取得很好的预测结果且不会损伤电脑

7.测试验证

下面放上对比图:(上面V7,下面V5)
15.png

8.系统整合

完整源码&环境部署视频教程&数据集&自定义UI界面
1.png

参考博客《犬只牵绳检测系统(源码&部署教程)》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1237552.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

腾讯云服务器99元一年是真的吗?假的!

腾讯云服务器99元一年是真的吗?假的,不用99元,只要88元即可购买一台2核2G3M带宽的轻量应用服务器,99元太多了,88元就够了,腾讯云百科活动 txybk.com/go/txy 活动打开如下图: 腾讯云轻量服务器 腾…

深度学习环境配置(Anaconda+pytorch+pycharm+cuda)

NVIDIA驱动安装 首先查看电脑的显卡版本,步骤为:此电脑右击-->管理-->设备管理器-->显示适配器。就可以看到电脑显卡的版本了。 然后按照电脑信息,到地址 去安装相应的驱动,Notebooks是笔记本的意思,然后下…

swagger的ApiImplicitParam注解中的required属性不起作用

问题的发现 如上两图,在接口中使用了’ApiImplicitParam’注解,仅指定了一个参数是必填,但是通过swagger文档查看三个参数均不能为空。 原因探究 最终确定到因为在RequestParam中也有一个required属性,用于指定是否必填。swagge…

抖音seo矩阵系统源代码部署及产品功能设计分析

一、引言 随着抖音等短视频平台的崛起,越来越多的企业和个人开始关注如何在这些平台上提升曝光量和用户流量。抖音SEO(搜索引擎优化)是一种有效的方法,通过优化短视频内容和关键词,让更多的人找到并点击你的视频。本文…

Android手机如何用Charles抓包HTTPS接口

对Charles的安装和使用,这里就不重复介绍了,之前有介绍Charles工具。 本文重点介绍在Android手机上如何配置抓包环境 1.获取Charles配置 去Help -> SSL Proxying -> Install Charles Root Certificate on a Mobile Device or Remote Browser 查…

重生奇迹mu格斗怎么加点

1.力量加点 力量是格斗家的主要属性之一,它可以增加你的攻击力和物理伤害。因此,对于格斗家来说,力量加点是非常重要的。建议在前期将大部分的加点放在力量上,这样可以让你更快地杀死怪物,提高升级速度。 2.敏捷加点…

西米支付:游戏支付的概念,发展,什么是游戏支付接口?

游戏支付平台是指专门用于游戏交易的在线支付系统。它为玩家提供了方便快捷的支付服务,让他们能够在游戏中购买虚拟物品、充值游戏币等。 游戏支付平台通过安全的支付通道和多种支付方式,保障了交易的安全性和便捷性。 同时,它也为游戏开发…

模电知识点总结(一)运算放大器

系列文章目录 文章目录 系列文章目录前言集成运算放大器基本线性运放电路虚短和虚断同向放大电路电压跟随器反向放大电路差分放大电路仪用放大器求和电路积分电路微分电路 前言 由于模电知识一直没用到,之前一直觉得没有什么用处,但是我越来越发现基础知…

渗透测试过程中的JS调试(一)

前言 前端调试是安全测试的重要组成部分。它能够帮助我们掌握网页的运行原理,包括js脚本的逻辑、加解密的方法、网络请求的参数等。利用这些信息,我们就可以更准确地发现网站的漏洞,制定出有效的攻击策略。前端知识对于安全来说,…

【Linux工具系列】linux安装Maven3.6.3

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老导航 檀越剑指大厂系列:全面总结 jav…

运维 在Windows上搭建小型Git服务

文章目录 1、Git选型1.1、主要特性1.2、代码管理1.3、工单管理1.4、Pull/Merge requests1.5、第三方集成1.6、选型结论 2、环境搭建2.1、Gitea下载2.2、Gitea安装2.3、配置服务信息2.4、运行服务2.5、注册Gitea为服务2.6、正常使用 1、Git选型 1.1、主要特性 1.2、代码管理 1.…

优思学院|质量管理怎样才能做好?

质量管理怎样才能做好?这是一个好问题,很多人第一时间会想到建立一个稳定的质量管理体系,例如ISO9001,又或者善用QC七大手法等等,虽然以上这些方法都是实用和正确的,绝大多数企业通常最忽略的,其…

虹科分享 | 平衡速度与优先级:为多样化的实时需求打造嵌入式网络(3)——CAN与CANopen的实时能力与局限性

在回顾了选择具有实时能力的嵌入式通信系统的基本要求之后,我们现在将更详细地探讨CAN和CANopen的实时能力和局限性。 控制器局域网(CAN)协议是各个行业众多应用的基础,每个应用都有其独特的实时需求。CANopen和J1939等著名示例强调了该协议的多种适应性…

PyCharm 配置sqlite3驱动下载问题

单击View -> Tool Windows -> Database,打开Database窗体,之后进行配置,下载驱动包失败! 解决 (1)下载Sqlite3驱动 下载地址: Central Repository: org/xerial/sqlite-jdbc 选择的版本是3.34.0,下载…

黑苹果新手指导:名词解释常用软件常见问题说明

黑苹果新手指导:名词解释&常用软件&常见问题说明 写在前面名词解释系统篇引导篇工具篇 常见问题安装篇如何安装黑苹果?安装过程中卡在一排号怎么办?AMD处理器可以安装黑苹果 macOS吗?我的笔记本电脑为什么不能驱动独立显卡…

溅射沉积镍薄膜的微观结构和应力演化

引言 众所周知,材料的宏观性质,例如硬度、热和电传输以及光学描述符与其微观结构特征相关联。通过改变加工参数,可以改变微结构,从而能够控制这些性质。在薄膜沉积的情况下,微结构特征,例如颗粒尺寸和它们…

穿越数据的迷宫-数据管理知识介绍

一、权威书籍介绍 《穿越数据的迷宫》 本书分12章重点阐述了数据管理的重要性,数据管理的挑战,DAMA的数据管理原则,数据伦理,数据治理,数据生命周期管理的规划和设计,数据赋能和数据维护,使用…

第15届蓝桥STEMA测评真题剖析-2023年10月29日Scratch编程初中级组

[导读]:超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成,后续会不定期解读蓝桥杯真题,这是Scratch蓝桥杯真题解析第160讲。 第15届蓝桥第2次STEMA测评,这是2023年10月29日举办的STEMA,比赛仍然采取线上形式。这…

PDF Reader Pro 3.0.1.0(pdf阅读器)

PDF Reader Pro是一款功能强大的PDF阅读、注释、填写表单&签名、转换、OCR、合并拆分PDF页面、编辑PDF等软件。 它支持多种颜色的高亮、下划线,可以按需选择,没有空白处可以进行注释,这时候便签是你最佳的选择,不点开时自动隐…

五大匹配算法

五大匹配算法 五大匹配算法 BF 匹配、RK 匹配、KMP 匹配、BM 匹配、Sunday 匹配。 1、BF 匹配 // BF 匹配(暴力匹配) public static int bfMatch(String text, String pattern) {char[] t text.toCharArray();char[] p pattern.toCharArray();int i …