回归预测 | MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型
目录
- 回归预测 | MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
果蝇算法(FOA)优化BP神经网络回归预测,FOA-BP回归预测,多变量输入模型
1.输入多个特征,输出单个变量,多输入单输出;
2.评价指标包括MAPE、RMSE、MSE;
3.果蝇算法(FOA)优化BP神经网络权值和阈值。
FOA-BP算法是一种基于果蝇算法和BP神经网络的优化算法,用于多变量输入回归预测模型的优化。
在FOA-BP算法中,首先使用果蝇算法对BP神经网络的初始权值和偏置进行优化,以提高BP神经网络的性能和收敛速度。然后,使用优化后的BP神经网络对多变量输入进行回归预测。
FOA-BP算法的优点是可以提高BP神经网络的性能和收敛速度,同时可以更好地处理多变量输入的回归预测问题。此外,该算法还具有较好的鲁棒性和泛化能力,适用于不同的数据集和预测问题。
需要注意的是,FOA-BP算法需要进行大量的计算和参数调整,因此在应用时需要进行充分的实验和验证,以确保算法的可靠性和有效性。
程序设计
- 完整程序和数据下载方式1(资源处直接下载):MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型
- 完整程序和数据下载方式2(订阅《智能学习》专栏,同时获取《智能学习》专栏收录程序3份,数据订阅后私信我获取):MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型
% X = zeros(1 * dim);
% Y = zeros(1 * dim);
% new_X = zeros(1 * dim);
% new_Y = zeros(1 * dim);
% D = zeros(1 * dim);
% Sol = zeros(1 * dim);
% Fitness = zeros(n * 1);
net = {};%用于存储网络
% Initialize the original position
for i = 1:n
X(i,:) = lb+(ub-lb).*rand(1,dim); % the position of X axis
Y(i,:) = lb+(ub-lb).*rand(1,dim); % the position of Y axis
D(i,:) = (X(i,:).^2 + Y(i,:).^2).^0.5; % Caculate the distance
Sol(i,:) = 1./D(i,:); % the solution set
[Fitness(i),net{i}] = fun(Sol(i,:)); % Caculate the fitness
end
[bestSmell,index] = min(Fitness); % Get the min fitness and its index
new_X = X(index,:); % the X axis of min fitness
new_Y = Y(index,:); % the Y axis of min fitness
Smellbest = bestSmell;
best = Sol(index,:);
BestNet = net{index};%最佳网络
% Start main loop
for t = 1:maxt
disp(['第',num2str(t),'次迭代'])
for i = 1:n
% Refer to the process of initializing
X(i,:) = new_X + (ub - lb).*rand();
Y(i,:) = new_Y + (ub - lb).*rand();
D(i,:) = (X(i,:).^2 + Y(i,:).^2).^0.5;
Sol(i,:) = 1./D(i,:);
[Fitness(i),net{i}] = fun(Sol(i,:));
end
[bestSmell,index] = min(Fitness);
% If the new value is smaller than the best value,update the best value
if (bestSmell < Smellbest)
X(i,:) = X(index,:);
Y(i,:) = Y(index,:);
Smellbest = bestSmell;
BestNet = net{index};
end
% Out put result each 100 iterations
if round(t/100) == (t/100)
Smellbest;
end
cg_curve(t) = Smellbest;
bestFitValue = Smellbest;
bestSolution = best;
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718