Java面试知识点(全)-分布式和微服务-redis面试知识点

news2024/12/24 20:16:27

redis是什么

redis是一种支持Key-Value等多种数据结构的存储系统。可用于缓存、事件发布或订阅、高速队列等场景。该数据库使用ANSI C语言编写,支持网络,提供字符串、哈希、列表、队列、集合结构直接存取,基于内存,可持久化。

为什么用redis

(一)性能
如下图所示,我们在碰到需要执行耗时特别久,且结果不频繁变动的SQL,就特别适合将运行结果放入缓存。这样,后面的请求就去缓存中读取,使得请求能够迅速响应。
(二)并发
如下图所示,在大并发的情况下,所有的请求直接访问数据库,数据库会出现连接异常。这个时候,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问数据库。

  • 读写性能优异
    ○ Redis能读的速度是110000次/s,写的速度是81000次/s (测试条件见下一节)。
  • 数据类型丰富
    ○ Redis支持二进制案例的 Strings, Lists, Hashes, Sets 及 Ordered Sets 数据类型操作。
  • 原子性
    ○ Redis的所有操作都是原子性的,同时Redis还支持对几个操作全并后的原子性执行。
  • 丰富的特性
    ○ Redis支持 publish/subscribe, 通知, key 过期等特性。
  • 持久化
    ○ Redis支持RDB, AOF等持久化方式
  • 发布订阅
    ○ Redis支持发布/订阅模式
  • 分布式
    Redis Cluster

单线程的redis为什么这么快

1、完全基于内存,绝大部分请求是纯粹的内存操作,非常快速。数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1);
2、数据结构简单,对数据操作也简单,Redis中的数据结构是专门进行设计的;
3、采用单线程,避免了不必要的上下文切换和竞争条件,也不存在多进程或者多线程导致的切换而消耗 CPU,不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗;
4、使用多路I/O复用模型,非阻塞IO;
5、使用底层模型不同,它们之间底层实现方式以及与客户端之间通信的应用协议不一样,Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求;
以上几点都比较好理解,下边我们针对多路 I/O 复用模型进行简单的探讨:
(1)多路 I/O 复用模型
多路I/O复用模型是利用 select、poll、epoll 可以同时监察多个流的 I/O 事件的能力,在空闲的时候,会把当前线程阻塞掉,当有一个或多个流有 I/O 事件时,就从阻塞态中唤醒,于是程序就会轮询一遍所有的流(epoll 是只轮询那些真正发出了事件的流),并且只依次顺序的处理就绪的流,这种做法就避免了大量的无用操作。
这里“多路”指的是多个网络连接,“复用”指的是复用同一个线程。采用多路 I/O 复用技术可以让单个线程高效的处理多个连接请求(尽量减少网络 IO 的时间消耗),且 Redis 在内存中操作数据的速度非常快,也就是说内存内的操作不会成为影响Redis性能的瓶颈,主要由以上几点造就了 Redis 具有很高的吞吐量。
我们首先要明白,上边的种种分析,都是为了营造一个Redis很快的氛围!官方FAQ表示,因为Redis是基于内存的操作,CPU不是Redis的瓶颈,Redis的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且CPU不会成为瓶颈,那就顺理成章地采用单线程的方案了(毕竟采用多线程会有很多麻烦!)。

Redis 数据类型有哪些底层数据结构

redis数据类型

Redis一共支持五种数据类:string(字符串)、hash(哈希)、list(列表)、set(集合)和zset(sorted set 有序集合)。
- String(字符串)
string 是 redis 最基本的类型,你可以理解成与 Memcached 一模一样的类型,一个 key 对应一个 value。
string 类型是二进制安全的。意思是 redis 的 string 可以包含任何数据。比如jpg图片或者序列化的对象。
string 类型是 Redis 最基本的数据类型,string 类型的值最大能存储 512MB。
实例
redis 127.0.0.1:6379> SET name “runoob”
OK
redis 127.0.0.1:6379> GET name
“runoob”
在以上实例中我们使用了 Redis 的 SET 和 GET 命令。键为 name,对应的值为 runoob。
注意:一个键最大能存储512MB。
- Hash(哈希)
Redis hash 是一个键值(key=>value)对集合。
Redis hash 是一个 string 类型的 field 和 value 的映射表,hash 特别适合用于存储对象。
实例
redis> HMSET myhash field1 “Hello” field2 “World”
“OK”
redis> HGET myhash field1
“Hello”
redis> HGET myhash field2
“World”
实例中我们使用了 Redis HMSET, HGET 命令,HMSET 设置了两个 field=>value 对, HGET 获取对应 field 对应的 value。
每个 hash 可以存储 232 -1 键值对(40多亿)。
- List(列表)
Redis 列表是简单的字符串列表,按照插入顺序排序。你可以添加一个元素到列表的头部(左边)或者尾部(右边)。
实例
redis 127.0.0.1:6379> lpush runoob redis
(integer) 1
redis 127.0.0.1:6379> lpush runoob mongodb
(integer) 2
redis 127.0.0.1:6379> lpush runoob rabitmq
(integer) 3
redis 127.0.0.1:6379> lrange runoob 0 10

  1. “rabitmq”

  2. “mongodb”

  3. “redis”
    redis 127.0.0.1:6379>
    列表最多可存储 232 - 1 元素 (4294967295, 每个列表可存储40多亿)。

    • Set(集合)
      Redis的Set是string类型的无序集合。
      集合是通过哈希表实现的,所以添加,删除,查找的复杂度都是O(1)。
      sadd 命令
      添加一个 string 元素到 key 对应的 set 集合中,成功返回1,如果元素已经在集合中返回 0,如果 key 对应的 set 不存在则返回错误。
      sadd key member
      实例
      redis 127.0.0.1:6379> sadd runoob redis
      (integer) 1
      redis 127.0.0.1:6379> sadd runoob mongodb
      (integer) 1
      redis 127.0.0.1:6379> sadd runoob rabitmq
      (integer) 1
      redis 127.0.0.1:6379> sadd runoob rabitmq
      (integer) 0
      redis 127.0.0.1:6379> smembers runoob
  4. “redis”

  5. “rabitmq”

  6. “mongodb”
    注意:以上实例中 rabitmq 添加了两次,但根据集合内元素的唯一性,第二次插入的元素将被忽略。
    集合中最大的成员数为 232 - 1(4294967295, 每个集合可存储40多亿个成员)。

    • zset(sorted set:有序集合)
      Redis zset 和 set 一样也是string类型元素的集合,且不允许重复的成员。
      不同的是每个元素都会关联一个double类型的分数。redis正是通过分数来为集合中的成员进行从小到大的排序。
      zset的成员是唯一的,但分数(score)却可以重复。
      zadd 命令
      添加元素到集合,元素在集合中存在则更新对应score
      zadd key score member
      实例
      redis 127.0.0.1:6379> zadd runoob 0 redis
      (integer) 1
      redis 127.0.0.1:6379> zadd runoob 0 mongodb
      (integer) 1
      redis 127.0.0.1:6379> zadd runoob 0 rabitmq
      (integer) 1
      redis 127.0.0.1:6379> zadd runoob 0 rabitmq
      (integer) 0
      redis 127.0.0.1:6379> > ZRANGEBYSCORE runoob 0 1000
  7. “mongodb”

  8. “rabitmq”

  9. “redis”

为什么要设计sds?

  • 常数复杂度获取字符串长度
    由于 len 属性的存在,我们获取 SDS 字符串的长度只需要读取 len 属性,时间复杂度为 O(1)。而对于 C 语言,获取字符串的长度通常是经过遍历计数来实现的,时间复杂度为 O(n)。通过 strlen key 命令可以获取 key 的字符串长度。
  • 杜绝缓冲区溢出
    我们知道在 C 语言中使用 strcat 函数来进行两个字符串的拼接,一旦没有分配足够长度的内存空间,就会造成缓冲区溢出。而对于 SDS 数据类型,在进行字符修改的时候,会首先根据记录的 len 属性检查内存空间是否满足需求,如果不满足,会进行相应的空间扩展,然后在进行修改操作,所以不会出现缓冲区溢出。
  • 减少修改字符串的内存重新分配次数
    C语言由于不记录字符串的长度,所以如果要修改字符串,必须要重新分配内存(先释放再申请),因为如果没有重新分配,字符串长度增大时会造成内存缓冲区溢出,字符串长度减小时会造成内存泄露。
    而对于SDS,由于len属性和alloc属性的存在,对于修改字符串SDS实现了空间预分配和惰性空间释放两种策略:
    1. 空间预分配:对字符串进行空间扩展的时候,扩展的内存比实际需要的多,这样可以减少连续执行字符串增长操作所需的内存重分配次数。
    2. 惰性空间释放:对字符串进行缩短操作时,程序不立即使用内存重新分配来回收缩短后多余的字节,而是使用 alloc 属性将这些字节的数量记录下来,等待后续使用。(当然SDS也提供了相应的API,当我们有需要时,也可以手动释放这些未使用的空间。)
  • 二进制安全
    因为C字符串以空字符作为字符串结束的标识,而对于一些二进制文件(如图片等),内容可能包括空字符串,因此C字符串无法正确存取;而所有 SDS 的API 都是以处理二进制的方式来处理 buf 里面的元素,并且 SDS 不是以空字符串来判断是否结束,而是以 len 属性表示的长度来判断字符串是否结束。
  • 兼容部分 C 字符串函数
    虽然 SDS 是二进制安全的,但是一样遵从每个字符串都是以空字符串结尾的惯例,这样可以重用 C 语言库<string.h> 中的一部分函数。

redis的过期策略以及内存淘汰机制

分析:这个问题其实相当重要,到底redis有没用到家,这个问题就可以看出来。比如你redis只能存5G数据,可是你写了10G,那会删5G的数据。怎么删的,这个问题思考过么?还有,你的数据已经设置了过期时间,但是时间到了,内存占用率还是比较高,有思考过原因么?

回答:
redis采用的是定期删除+惰性删除策略。
- 为什么不用定时删除策略?
定时删除,用一个定时器来负责监视key,过期则自动删除。虽然内存及时释放,但是十分消耗CPU资源。在大并发请求下,CPU要将时间应用在处理请求,而不是删除key,因此没有采用这一策略.
- 定期删除+惰性删除是如何工作的呢?
定期删除,redis默认每个100ms检查,是否有过期的key,有过期key则删除。需要说明的是,redis不是每个100ms将所有的key检查一次,而是随机抽取进行检查(如果每隔100ms,全部key进行检查,redis岂不是卡死)。因此,如果只采用定期删除策略,会导致很多key到时间没有删除。
于是,惰性删除派上用场。也就是说在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除。
- 采用定期删除+惰性删除就没其他问题了么?
不是的,如果定期删除没删除key。然后你也没即时去请求key,也就是说惰性删除也没生效。这样,redis的内存会越来越高。那么就应该采用内存淘汰机制。
- 在redis.conf中有一行配置,采用内存淘汰机制

maxmemory-policy volatile-lru

该配置就是配内存淘汰策略的(什么,你没配过?好好反省一下自己)
1)noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。应该没人用吧。
2)allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。推荐使用,目前项目在用这种。
3)allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。应该也没人用吧,你不删最少使用Key,去随机删。
4)volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。这种情况一般是把redis既当缓存,又做持久化存储的时候才用。不推荐
5)volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。依然不推荐
6)volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。不推荐
ps:如果没有设置 expire 的key, 不满足先决条件(prerequisites); 那么 volatile-lru, volatile-random 和 volatile-ttl 策略的行为, 和 noeviction(不删除) 基本上一致。
- 常用的淘汰算法:
FIFO:First In First Out,先进先出。判断被存储的时间,离目前最远的数据优先被淘汰。
LRU:Least Recently Used,最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。
LFU:Least Frequently Used,最不经常使用。在一段时间内,数据被使用次数最少的,优先被淘汰。

redis和数据库双写一致性问题

分析:一致性问题是分布式常见问题,还可以再分为最终一致性和强一致性。数据库和缓存双写,就必然会存在不一致的问题。答这个问题,先明白一个前提。就是如果对数据有强一致性要求,不能放缓存。我们所做的一切,只能保证最终一致性。另外,我们所做的方案其实从根本上来说,只能说降低不一致发生的概率,无法完全避免。因此,有强一致性要求的数据,不能放缓存。
首先,采取正确更新策略,先更新数据库,再删缓存。其次,因为可能存在删除缓存失败的问题,提供一个补偿措施即可,例如利用消息队列。

如何应对缓存穿透和缓存雪崩问题

分析:这两个问题,说句实在话,一般中小型传统软件企业,很难碰到这个问题。如果有大并发的项目,流量有几百万左右。这两个问题一定要深刻考虑。

回答:如下所示

  • 缓存穿透
    缓存穿透,即黑客故意去请求缓存中不存在的数据,导致所有的请求都怼到数据库上,从而数据库连接异常。
    解决方案:
    (一)利用互斥锁,缓存失效的时候,先去获得锁,得到锁了,再去请求数据库。没得到锁,则休眠一段时间重试
    业界比价普遍的一种做法,即根据key获取value值为空时,锁上,从数据库中load数据后再释放锁。若其它线程获取锁失败,则等待一段时间后重试。这里要注意,分布式环境中要使用分布式锁,单机的话用普通的锁(synchronized、Lock)就够了。
public String getWithLock(String key, Jedis jedis, String lockKey, String uniqueId, long expireTime) {
    // 通过key获取value
    String value = redisService.get(key);
    if (StringUtil.isEmpty(value)) {
        //封装的tryDistributedLock包括setnx和expire两个功能,在低版本的redis中不支持
        try {
            boolean locked = redisService.tryDistributedLock(jedis, lockKey, uniqueId, expireTime);
            if (locked) {
                value = userService.getById(key);
                redisService.set(key, value);
                redisService.del(lockKey);
                return value;
            } else {
                // 其它线程进来了没获取到锁便等待50ms后重试
                Thread.sleep(50);
                getWithLock(key, jedis, lockKey, uniqueId, expireTime);
            }
        } catch (Exception e) {
            log.error("getWithLock exception=" + e);
            return value;
        } finally {
            redisService.releaseDistributedLock(jedis, lockKey, uniqueId);
        }
    }
    return value;
}
这样做思路比较清晰,也从一定程度上减轻数据库压力,但是锁机制使得逻辑的复杂度增加,吞吐量也降低了,有点治标不治本。

(二)采用异步更新策略,无论key是否取到值,都直接返回。value值中维护一个缓存失效时间,缓存如果过期,异步起一个线程去读数据库,更新缓存。需要做缓存预热(项目启动前,先加载缓存)操作。
(三) 利用布隆过滤器,供一个能迅速判断请求是否有效的拦截机制,内部维护一系列合法有效的key。迅速判断出,请求所携带的Key是否合法有效。如果不合法,则直接返回。
bloomfilter就类似于一个hash set,用于快速判某个元素是否存在于集合中,其典型的应用场景就是快速判断一个key是否存在于某容器,不存在就直接返回。布隆过滤器的关键就在于hash算法和容器大小,下面先来简单的实现下看看效果,我这里用guava实现的布隆过滤器:

<dependencies>  
     <dependency>  
         <groupId>com.google.guava</groupId>  
         <artifactId>guava</artifactId>  
         <version>23.0</version>  
     </dependency>  
</dependencies>  
public class BloomFilterTest {
    private static final int capacity = 1000000;
    private static final int key = 999998;
    private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), capacity);
    static {
        for (int i = 0; i < capacity; i++) {
            bloomFilter.put(i);
        }
    }
    public static void main(String[] args) {
        /*返回计算机最精确的时间,单位微妙*/
        long start = System.nanoTime();
        if (bloomFilter.mightContain(key)) {
            System.out.println("成功过滤到" + key);
        }
        long end = System.nanoTime();
        System.out.println("布隆过滤器消耗时间:" + (end - start));
        int sum = 0;
        for (int i = capacity + 20000; i < capacity + 30000; i++) {
            if (bloomFilter.mightContain(i)) {
                sum = sum + 1;
            }
        }
        System.out.println("错判率为:" + sum);
    }
}
布隆过滤器不支持删除操作。用在这边解决缓存穿透问题就是:
public String getByKey(String key) {
    // 通过key获取value
    String value = redisService.get(key);
    if (StringUtil.isEmpty(value)) {
        if (bloomFilter.mightContain(key)) {
            value = userService.getById(key);
            redisService.set(key, value);
            return value;
        } else {
            return null;
        }
    }
    return value;
  • 缓存雪崩
    缓存雪崩,即缓存同一时间大面积的失效,这个时候又来了一波请求,结果请求都怼到数据库上,从而导致数据库连接异常。
    解决方案:
    (一)给缓存的失效时间,加上一个随机值,避免集体失效。
    (二)使用互斥锁,但是该方案吞吐量明显下降了,实现同上
    (三)双缓存。我们有两个缓存,缓存A和缓存B。缓存A的失效时间为20分钟,缓存B不设失效时间。自己做缓存预热操作。然后细分以下几个小点
    I 从缓存A读数据库,有则直接返回
    II A没有数据,直接从B读数据,直接返回,并且异步启动一个更新线程。
    III 更新线程同时更新缓存A和缓存B。

如何解决redis的并发竞争key问题

析:这个问题大致就是,同时有多个子系统去set一个key。这个时候要注意什么呢?大家思考过么。需要说明一下,博主提前百度了一下,发现答案基本都是推荐用redis事务机制。博主不推荐使用redis的事务机制。因为我们的生产环境,基本都是redis集群环境,做了数据分片操作。你一个事务中有涉及到多个key操作的时候,这多个key不一定都存储在同一个redis-server上。因此,redis的事务机制,十分鸡肋。

回答:如下所示
(1)如果对这个key操作,不要求顺序
这种情况下,准备一个分布式锁,大家去抢锁,抢到锁就做set操作即可,比较简单。
(2)如果对这个key操作,要求顺序
假设有一个key1,系统A需要将key1设置为valueA,系统B需要将key1设置为valueB,系统C需要将key1设置为valueC.
期望按照key1的value值按照 valueA–>valueB–>valueC的顺序变化。这种时候我们在数据写入数据库的时候,需要保存一个时间戳。假设时间戳如下
系统A key 1 {valueA 3:00}
系统B key 1 {valueB 3:05}
系统C key 1 {valueC 3:10}
那么,假设这会系统B先抢到锁,将key1设置为{valueB 3:05}。接下来系统A抢到锁,发现自己的valueA的时间戳早于缓存中的时间戳,那就不做set操作了。以此类推。

redis的应用场景有哪些

1、会话缓存(最常用)
2、消息队列,比如支付
3、活动排行榜或计数
4、发布、订阅消息(消息通知)
5、商品列表、评论列表等

redis服务相关的命令

slect #选择数据库(数据库编号0-15)
quit #退出连接
info #获得服务的信息与统计
monitor #实时监控
config get #获得服务配置
flushdb #删除当前选择的数据库中的key
flushall #删除所有数据库中的key

redis持久化

redis持久有两种方式:Snapshotting(快照),Append-only file(AOF)
1、快照(snapshots)
缺省情况情况下,Redis把数据快照存放在磁盘上的二进制文件中,文件名为dump.rdb。你可以配置Redis的持久化策略,例如数据集中每N秒钟有超过M次更新,就将数据写入磁盘;或者你可以手工调用命令SAVE或BGSAVE。
工作原理
. Redis forks.
. 子进程开始将数据写到临时RDB文件中。
. 当子进程完成写RDB文件,用新文件替换老文件。
. 这种方式可以使Redis使用copy-on-write技术。
2、AOF
快照模式并不十分健壮,当系统停止,或者无意中Redis被kill掉,最后写入Redis的数据就会丢失。这对某些应用也许不是大问题,但对于要求高可靠性的应用来说,
Redis就不是一个合适的选择。
Append-only文件模式是另一种选择。
你可以在配置文件中打开AOF模式
3、虚拟内存方式
当你的key很小而value很大时,使用VM的效果会比较好.因为这样节约的内存比较大.
当你的key不小时,可以考虑使用一些非常方法将很大的key变成很大的value,比如你可以考虑将key,value组合成一个新的value.
vm-max-threads这个参数,可以设置访问swap文件的线程数,设置最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的.可能会造成比较长时间的延迟,但是对数据完整性有很好的保证.
自己测试的时候发现用虚拟内存性能也不错。如果数据量很大,可以考虑分布式或者其他数据

常见性能问题和解决方案

1).Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。
2).Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久
化,如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。
3).Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。
4). Redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,Slave和Master最好在同一个局域网内

Redis 对 ACID的支持性理解?

• 原子性atomicity

首先通过上文知道 运行期的错误是不会回滚的,很多文章由此说Redis事务违背原子性的;而官方文档认为是遵从原子性的。
Redis官方文档给的理解是,Redis的事务是原子性的:所有的命令,要么全部执行,要么全部不执行。而不是完全成功。
• 一致性consistency
redis事务可以保证命令失败的情况下得以回滚,数据能恢复到没有执行之前的样子,是保证一致性的,除非redis进程意外终结。
• 隔离性Isolation
redis事务是严格遵守隔离性的,原因是redis是单进程单线程模式(v6.0之前),可以保证命令执行过程中不会被其他客户端命令打断。
但是,Redis不像其它结构化数据库有隔离级别这种设计。
• 持久性Durability
redis事务是不保证持久性的,这是因为redis持久化策略中不管是RDB还是AOF都是异步执行的,不保证持久性是出于对性能的考虑。

Redis集群的主从复制模型是怎样的?

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(master),后者称为从节点(slave);数据的复制是单向的,只能由主节点到从节点。
主从复制的作用主要包括:
• 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
• 故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
• 负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
• 高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。
主从库之间采用的是读写分离的方式。
• 读操作:主库、从库都可以接收;
• 写操作:首先到主库执行,然后,主库将写操作同步给从库。

在这里插入图片描述

注意:在2.8版本之前只有全量复制,而2.8版本后有全量和增量复制:
• 全量(同步)复制:比如第一次同步时
• 增量(同步)复制:只会把主从库网络断连期间主库收到的命令,同步给从库

Redis 全量复制的三个阶段?

在这里插入图片描述

第一阶段是主从库间建立连接、协商同步的过程,主要是为全量复制做准备。在这一步,从库和主库建立起连接,并告诉主库即将进行同步,主库确认回复后,主从库间就可以开始同步了。

具体来说,从库给主库发送 psync 命令,表示要进行数据同步,主库根据这个命令的参数来启动复制。psync 命令包含了主库的 runID 和复制进度 offset 两个参数。runID,是每个 Redis 实例启动时都会自动生成的一个随机 ID,用来唯一标记这个实例。当从库和主库第一次复制时,因为不知道主库的 runID,所以将 runID 设为“?”。offset,此时设为 -1,表示第一次复制。主库收到 psync 命令后,会用 FULLRESYNC 响应命令带上两个参数:主库 runID 和主库目前的复制进度 offset,返回给从库。从库收到响应后,会记录下这两个参数。这里有个地方需要注意,FULLRESYNC 响应表示第一次复制采用的全量复制,也就是说,主库会把当前所有的数据都复制给从库。

第二阶段,主库将所有数据同步给从库。从库收到数据后,在本地完成数据加载。这个过程依赖于内存快照生成的 RDB 文件。

具体来说,主库执行 bgsave 命令,生成 RDB 文件,接着将文件发给从库。从库接收到 RDB 文件后,会先清空当前数据库,然后加载 RDB 文件。这是因为从库在通过 replicaof 命令开始和主库同步前,可能保存了其他数据。为了避免之前数据的影响,从库需要先把当前数据库清空。在主库将数据同步给从库的过程中,主库不会被阻塞,仍然可以正常接收请求。否则,Redis 的服务就被中断了。但是,这些请求中的写操作并没有记录到刚刚生成的 RDB 文件中。为了保证主从库的数据一致性,主库会在内存中用专门的 replication buffer,记录 RDB 文件生成后收到的所有写操作。
第三个阶段,主库会把第二阶段执行过程中新收到的写命令,再发送给从库。具体的操作是,当主库完成 RDB 文件发送后,就会把此时 replication buffer 中的修改操作发给从库,从库再重新执行这些操作。这样一来,主从库就实现同步了。

Redis 为什么会设计增量复制?

如果主从库在命令传播时出现了网络闪断,那么,从库就会和主库重新进行一次全量复制,开销非常大。从 Redis 2.8 开始,网络断了之后,主从库会采用增量复制的方式继续同步。

Redis 增量复制的流程?

在这里插入图片描述

先看两个概念: replication buffer 和 repl_backlog_buffer
repl_backlog_buffer:它是为了从库断开之后,如何找到主从差异数据而设计的环形缓冲区,从而避免全量复制带来的性能开销。如果从库断开时间太久,repl_backlog_buffer环形缓冲区被主库的写命令覆盖了,那么从库连上主库后只能乖乖地进行一次全量复制,所以repl_backlog_buffer配置尽量大一些,可以降低主从断开后全量复制的概率。而在repl_backlog_buffer中找主从差异的数据后,如何发给从库呢?这就用到了replication buffer。

replication buffer:Redis和客户端通信也好,和从库通信也好,Redis都需要给分配一个 内存buffer进行数据交互,客户端是一个client,从库也是一个client,我们每个client连上Redis后,Redis都会分配一个client buffer,所有数据交互都是通过这个buffer进行的:Redis先把数据写到这个buffer中,然后再把buffer中的数据发到client socket中再通过网络发送出去,这样就完成了数据交互。所以主从在增量同步时,从库作为一个client,也会分配一个buffer,只不过这个buffer专门用来传播用户的写命令到从库,保证主从数据一致,我们通常把它叫做replication buffer。

增量复制如果在网络断开期间,repl_backlog_size环形缓冲区写满之后,从库是会丢失掉那部分被覆盖掉的数据,还是直接进行全量复制呢

对于这个问题来说,有两个关键点:
1. 一个从库如果和主库断连时间过长,造成它在主库repl_backlog_buffer的slave_repl_offset位置上的数据已经被覆盖掉了,此时从库和主库间将进行全量复制。
2. 每个从库会记录自己的slave_repl_offset,每个从库的复制进度也不一定相同。在和主库重连进行恢复时,从库会通过psync命令把自己记录的slave_repl_offset发给主库,主库会根据从库各自的复制进度,来决定这个从库可以进行增量复制,还是全量复制。

Redis 为什么还会有从库的从库的设计?

通过分析主从库间第一次数据同步的过程,你可以看到,一次全量复制中,对于主库来说,需要完成两个耗时的操作:生成 RDB 文件和传输 RDB 文件。

如果从库数量很多,而且都要和主库进行全量复制的话,就会导致主库忙于 fork 子进程生成 RDB 文件,进行数据全量复制。fork 这个操作会阻塞主线程处理正常请求,从而导致主库响应应用程序的请求速度变慢。此外,传输 RDB 文件也会占用主库的网络带宽,同样会给主库的资源使用带来压力。那么,有没有好的解决方法可以分担主库压力呢?

其实是有的,这就是“主 - 从 - 从”模式。
在刚才介绍的主从库模式中,所有的从库都是和主库连接,所有的全量复制也都是和主库进行的。现在,我们可以通过“主 - 从 - 从”模式将主库生成 RDB 和传输 RDB 的压力,以级联的方式分散到从库上。

简单来说,我们在部署主从集群的时候,可以手动选择一个从库(比如选择内存资源配置较高的从库),用于级联其他的从库。然后,我们可以再选择一些从库(例如三分之一的从库),在这些从库上执行如下命令,让它们和刚才所选的从库,建立起主从关系。

replicaof 所选从库的IP 6379

这样一来,这些从库就会知道,在进行同步时,不用再和主库进行交互了,只要和级联的从库进行写操作同步就行了,这就可以减轻主库上的压力,如下图所示:

在这里插入图片描述

级联的“主-从-从”模式好了,到这里,我们了解了主从库间通过全量复制实现数据同步的过程,以及通过“主 - 从 - 从”模式分担主库压力的方式。那么,一旦主从库完成了全量复制,它们之间就会一直维护一个网络连接,主库会通过这个连接将后续陆续收到的命令操作再同步给从库,这个过程也称为基于长连接的命令传播,可以避免频繁建立连接的开销。

Redis哨兵机制?哨兵实现了什么功能呢?

哨兵的核心功能是主节点的自动故障转移。
下图是一个典型的哨兵集群监控的逻辑图:

在这里插入图片描述

哨兵实现了什么功能呢?下面是Redis官方文档的描述:
• 监控(Monitoring):哨兵会不断地检查主节点和从节点是否运作正常。
• 自动故障转移(Automatic failover):当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其他从节点改为复制新的主节点。
• 配置提供者(Configuration provider):客户端在初始化时,通过连接哨兵来获得当前Redis服务的主节点地址。
• 通知(Notification):哨兵可以将故障转移的结果发送给客户端。
其中,监控和自动故障转移功能,使得哨兵可以及时发现主节点故障并完成转移;而配置提供者和通知功能,则需要在与客户端的交互中才能体现。

Redis 哨兵集群是通过什么方式组建的?

哨兵实例之间可以相互发现,要归功于 Redis 提供的 pub/sub 机制,也就是发布 / 订阅机制。
在主从集群中,主库上有一个名为__sentinel__:hello的频道,不同哨兵就是通过它来相互发现,实现互相通信的。在下图中,哨兵 1 把自己的 IP(172.16.19.3)和端口(26579)发布到__sentinel__:hello频道上,哨兵 2 和 3 订阅了该频道。那么此时,哨兵 2 和 3 就可以从这个频道直接获取哨兵 1 的 IP 地址和端口号。然后,哨兵 2、3 可以和哨兵 1 建立网络连接。

在这里插入图片描述

通过这个方式,哨兵 2 和 3 也可以建立网络连接,这样一来,哨兵集群就形成了。它们相互间可以通过网络连接进行通信,比如说对主库有没有下线这件事儿进行判断和协商。

Redis 哨兵是如何监控Redis集群的?

这是由哨兵向主库发送 INFO 命令来完成的。就像下图所示,哨兵 2 给主库发送 INFO 命令,主库接受到这个命令后,就会把从库列表返回给哨兵。接着,哨兵就可以根据从库列表中的连接信息,和每个从库建立连接,并在这个连接上持续地对从库进行监控。哨兵 1 和 3 可以通过相同的方法和从库建立连接。

在这里插入图片描述

Redis 哨兵如何判断主库已经下线了呢?

首先要理解两个概念:主观下线和客观下线
• 主观下线:任何一个哨兵都是可以监控探测,并作出Redis节点下线的判断;
• 客观下线:有哨兵集群共同决定Redis节点是否下线;
当某个哨兵(如下图中的哨兵2)判断主库“主观下线”后,就会给其他哨兵发送 is-master-down-by-addr 命令。接着,其他哨兵会根据自己和主库的连接情况,做出 Y 或 N 的响应,Y 相当于赞成票,N 相当于反对票。

在这里插入图片描述

如果赞成票数(这里是2)是大于等于哨兵配置文件中的 quorum 配置项(比如这里如果是quorum=2), 则可以判定主库客观下线了。

Redis 哨兵的选举机制是什么样的?

• 为什么必然会出现选举/共识机制?

为了避免哨兵的单点情况发生,所以需要一个哨兵的分布式集群。作为分布式集群,必然涉及共识问题(即选举问题);同时故障的转移和通知都只需要一个主的哨兵节点就可以了。
• 哨兵的选举机制是什么样的?
哨兵的选举机制其实很简单,就是一个Raft选举算法: 选举的票数大于等于num(sentinels)/2+1时,将成为领导者,如果没有超过,继续选举
Raft算法你可以参看这篇文章分布式算法 - Raft算法
• 任何一个想成为 Leader 的哨兵,要满足两个条件:
○ 第一,拿到半数以上的赞成票;
○ 第二,拿到的票数同时还需要大于等于哨兵配置文件中的 quorum 值。

以 3 个哨兵为例,假设此时的 quorum 设置为 2,那么,任何一个想成为 Leader 的哨兵只要拿到 2 张赞成票,就可以了。

Redis 1主4从,5个哨兵,哨兵配置quorum为2,如果3个哨兵故障,当主库宕机时,哨兵能否判断主库“客观下线”?能否自动切换?

经过实际测试:
1、哨兵集群可以判定主库“主观下线”。由于quorum=2,所以当一个哨兵判断主库“主观下线”后,询问另外一个哨兵后也会得到同样的结果,2个哨兵都判定“主观下线”,达到了quorum的值,因此,哨兵集群可以判定主库为“客观下线”。
2、但哨兵不能完成主从切换。哨兵标记主库“客观下线后”,在选举“哨兵领导者”时,一个哨兵必须拿到超过多数的选票(5/2+1=3票)。但目前只有2个哨兵活着,无论怎么投票,一个哨兵最多只能拿到2票,永远无法达到N/2+1选票的结果。

主库判定客观下线了,那么如何从剩余的从库中选择一个新的主库呢?

• 过滤掉不健康的(下线或断线),没有回复过哨兵ping响应的从节点
• 选择salve-priority从节点优先级最高(redis.conf)的
• 选择复制偏移量最大,只复制最完整的从节点

在这里插入图片描述

新的主库选择出来后,如何进行故障的转移?

假设根据我们一开始的图:(我们假设:判断主库客观下线了,同时选出sentinel 3是哨兵leader)
在这里插入图片描述

故障转移流程如下:

在这里插入图片描述

• 将slave-1脱离原从节点(PS: 5.0 中应该是replicaof no one),升级主节点,
• 将从节点slave-2指向新的主节点
• 通知客户端主节点已更换
• 将原主节点(oldMaster)变成从节点,指向新的主节点

转移之后
在这里插入图片描述

什么是Redis Cluster?

Redis-cluster是一种服务器Sharding技术,Redis3.0以后版本正式提供支持。

说说Redis哈希槽的概念?为什么是16384个?

Redis-cluster没有使用一致性hash,而是引入了哈希槽的概念。Redis-cluster中有16384(即2的14次方)个哈希槽,每个key通过CRC16校验后对16383取模来决定放置哪个槽。Cluster中的每个节点负责一部分hash槽(hash slot)。
比如集群中存在三个节点,则可能存在的一种分配如下:
1. 节点A包含0到5500号哈希槽;
2. 节点B包含5501到11000号哈希槽;
3. 节点C包含11001 到 16384号哈希槽。
• 为什么是16384个
在redis节点发送心跳包时需要把所有的槽放到这个心跳包里,以便让节点知道当前集群信息,16384=16k,在发送心跳包时使用char进行bitmap压缩后是2k(2 * 8 (8 bit) * 1024(1k) = 16K),也就是说使用2k的空间创建了16k的槽数。
虽然使用CRC16算法最多可以分配65535(2^16-1)个槽位,65535=65k,压缩后就是8k(8 * 8 (8 bit) * 1024(1k) =65K),也就是说需要需要8k的心跳包,作者认为这样做不太值得;并且一般情况下一个redis集群不会有超过1000个master节点,所以16k的槽位是个比较合适的选择。

Redis集群会有写操作丢失吗?为什么?

Redis并不能保证数据的强一致性,这意味这在实际中集群在特定的条件下可能会丢失写操作。

Redis 客户端有哪些?

Redisson、Jedis、lettuce等等,官方推荐使用Redisson。
Redisson是一个高级的分布式协调Redis客服端,能帮助用户在分布式环境中轻松实现一些Java的对象 (Bloom filter, BitSet, Set, SetMultimap, ScoredSortedSet, SortedSet, Map, ConcurrentMap, List, ListMultimap, Queue, BlockingQueue, Deque, BlockingDeque, Semaphore, Lock, ReadWriteLock, AtomicLong, CountDownLatch, Publish / Subscribe, HyperLogLog)。

Redis如何做大量数据插入?

Redis2.6开始redis-cli支持一种新的被称之为pipe mode的新模式用于执行大量数据插入工作。

Redis实现分布式锁实现? 什么是 RedLock?

• 常规

加锁: SET NX PX + 校验唯一随机值
解锁: Lua脚本
• RedLock
搞多个Redis master部署,以保证它们不会同时宕掉。并且这些master节点是完全相互独立的,相互之间不存在数据同步。同时,需要确保在这多个master实例上,是与在Redis单实例,使用相同方法来获取和释放锁。
• Redisson框架
Redisson watchdog或者它实现了RedLock方式
具体可以看后文分布式锁中实现方式。

Redis缓存有哪些问题,如何解决?

当缓存库出现时,必须要考虑如下问题:
• 缓存穿透
○ 问题来源: 缓存穿透是指缓存和数据库中都没有的数据,而用户不断发起请求。由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。
○ 解决方案
§ 接口层增加校验,如用户鉴权校验,id做基础校验,id<=0的直接拦截;
§ 从缓存取不到的数据,在数据库中也没有取到,这时也可以将key-value对写为key-null,缓存有效时间可以设置短点,如30秒(设置太长会导致正常情况也没法使用)。这样可以防止攻击用户反复用同一个id暴力攻击
§ 布隆过滤器。bloomfilter就类似于一个hash set,用于快速判某个元素是否存在于集合中,其典型的应用场景就是快速判断一个key是否存在于某容器,不存在就直接返回。布隆过滤器的关键就在于hash算法和容器大小
• 缓存穿击
○ 问题来源: 缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大,造成过大压力。
○ 解决方案
§ 设置热点数据永远不过期。
§ 接口限流与熔断,降级。重要的接口一定要做好限流策略,防止用户恶意刷接口,同时要降级准备,当接口中的某些 服务 不可用时候,进行熔断,失败快速返回机制。
§ 加互斥锁
• 缓存雪崩
○ 问题来源: 缓存雪崩是指缓存中数据大批量到过期时间,而查询数据量巨大,引起数据库压力过大甚至down机。和缓存击穿不同的是,缓存击穿指并发查同一条数据,缓存雪崩是不同数据都过期了,很多数据都查不到从而查数据库。
○ 解决方案
§ 缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生。
§ 如果缓存数据库是分布式部署,将热点数据均匀分布在不同的缓存数据库中。
§ 设置热点数据永远不过期。
• 缓存污染(或者满了)
缓存污染问题说的是缓存中一些只会被访问一次或者几次的的数据,被访问完后,再也不会被访问到,但这部分数据依然留存在缓存中,消耗缓存空间。
缓存污染会随着数据的持续增加而逐渐显露,随着服务的不断运行,缓存中会存在大量的永远不会再次被访问的数据。缓存空间是有限的,如果缓存空间满了,再往缓存里写数据时就会有额外开销,影响Redis性能。这部分额外开销主要是指写的时候判断淘汰策略,根据淘汰策略去选择要淘汰的数据,然后进行删除操作。

Redis单线程模型? 在6.0之前如何提高多核CPU的利用率?
可以在同一个服务器部署多个Redis的实例,并把他们当作不同的服务器来使用,在某些时候,无论如何一个服务器是不够的, 所以,如果你想使用多个CPU,你可以考虑一下分片(shard)。

Redis6.0之前的版本真的是单线程的吗?

Redis在处理客户端请求时,包括获取(socket读)、解析、执行、内容返回(socket写)等都是由一个顺序串行的主线程执行的,这就是所谓的 单线程.单如果严格讲,从Redis4.0之后并不是单线程,除了主线程之外,它也有后台线程在处理一些较为缓慢的操作,例如 清理脏数据, 无用链接的释放, 大key的删除, 数据持久化bgsave,bgrewriteaof等,都是在主线程之外的子线程单独执行的.

Redis6.0之前为什么一致不用多线程?

官方曾做过类似问题的回复:使用Redis时,几乎不存在CPU成为瓶颈的情况, Redis主要受限于内存和网络。例如在一个普通的Linux系统上,Redis通过使用pipelining每秒可以处理100万个请求,所以如果应用程序主要使用O(N)或O(log(N))的命令,它几乎不会占用太多CPU。
使用了单线程后,可维护性高。多线程模型虽然在某些方面表现优异,但是它却引入了程序执行顺序的不确定性,带来了并发读写的一系列问题,增加了系统复杂度、同时可能存在线程切换、甚至加锁解锁、死锁造成的性能损耗。Redis通过AE事件模型以及IO多路复用等技术,处理性能非常高,因此没有必要使用多线程。单线程机制使得 Redis 内部实现的复杂度大大降低,Hash 的惰性 Rehash、Lpush 等等 “线程不安全” 的命令都可以无锁进行。

Redis6.0为什么要引入多线程呢?

Redis将所有数据放在内存中,内存的响应时长大约为100纳秒,对于小数据包,Redis服务器可以处理80,000到100,000 QPS,这也是Redis处理的极限了,对于80%的公司来说,单线程的Redis已经足够使用了。
但随着越来越复杂的业务场景,有些公司动不动就上亿的交易量,因此需要更大的QPS。常见的解决方案是在分布式架构中对数据进行分区并采用多个服务器,但该方案有非常大的缺点,例如要管理的Redis服务器太多,维护代价大;某些适用于单个Redis服务器的命令不适用于数据分区;数据分区无法解决热点读/写问题;数据偏斜,重新分配和放大/缩小变得更加复杂等等。
从Redis自身角度来说,因为读写网络的read/write系统调用占用了Redis执行期间大部分CPU时间,瓶颈主要在于网络的 IO 消耗, 优化主要有两个方向:
• 提高网络 IO 性能,典型的实现比如使用 DPDK 来替代内核网络栈的方式
• 使用多线程充分利用多核,典型的实现比如 Memcached
协议栈优化的这种方式跟 Redis 关系不大,支持多线程是一种最有效最便捷的操作方式。所以总结起来,redis支持多线程主要就是两个原因:
• 可以充分利用服务器 CPU 资源,目前主线程只能利用一个核
• 多线程任务可以分摊 Redis 同步 IO 读写负荷

Redis6.0默认是否开启了多线程?

Redis6.0的多线程默认是禁用的,只使用主线程。如需开启需要修改redis.conf配置文件:io-threads-do-reads yes

Redis6.0多线程开启时,线程数如何设置?

开启多线程后,还需要设置线程数,否则是不生效的。同样修改redis.conf配置文件 io-threads4
关于线程数的设置,官方有一个建议:4核的机器建议设置为2或3个线程,8核的建议设置为6个线程,线程数一定要小于机器核数。还需要注意的是,线程数并不是越大越好,官方认为超过了8个基本就没什么意义了。

Redis6.0多线程的实现机制?

核心思路是,将主线程的IO读写任务拆分出来给一组独立的线程执行,使得多个 socket 的读写可以并行化
• 主线程负责接收建立连接的请求,获取socket放到全局等待处理队列
• 主线程处理完读事件之后,通过Round Robin将这些连接分配给IO线程(并不会等待队列满)
• 主线程阻塞等待IO线程读取socket完毕
• 主线程通过单线程的方式执行请求命令,请求数据读取并解析完成,但并不执行
• 主线程阻塞等待IO线程将数据回写socket完毕
• 解除绑定,清空等待队列
该线程有如下特点:
• IO线程要么同时在读socket,要么同时在写,不会同时读或写
• IO线程只负责读写socket解析命令,不负责命令处理(主线程串行执行命令)

开启多线程后,是否会存在线程并发安全问题?

Redis的多线程部分只是用来处理网络数据的读写和协议解析,执行命令仍然是单线程顺序执行,因此不存在线程的并发安全问题

Redis优化

扩展读性能

1.在使用短结构时,请确保压缩列表的最大长度不会太大以至于影响性能
2.根据程序需要执行的查询类型,选择能够为这种查询提供最好性能的结构
3.大对象放到redis之前,考虑对它进行压缩以减少读取和写入对象需要的网络带宽。对比压缩算法lz4,gzip和bzip2
4。使用pipeline
5.增加从服务器
6.增加主从复制树减少主服务器可用带宽消耗殆尽
7.网络连接进行压缩减少数据传输量
8.减少加密和压缩开销

扩展写性能

1.尽可能减少程序所需要读取的数据量
2.将无关的功能迁移至其它服务器
3.在对redis进行写入之前,尝试在本地内存中对将要写入的数据进行聚合计算,这一做法可以应用所有分析方法和统计计算方法。
4.使用锁去替换可能会给速度带来限制的watch、multi、exec事物,或者使用lua脚本
5.使用aof持久化的情况下,机器的硬盘必须将程序写入的所有数据储存起来,这需要花费一定的时间。
6.数据分片
7.单台机器运行对个redis服务器
8,冷热数据分离,冷数据写入mysql,mongodb之类的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/555669.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一个神奇的小工具,让URL地址都变成了“ooooooooo“

转换的逻辑有点像短链平台一样&#xff0c;只不过这个是将你的URL地址变的很长长长长&#xff0c;但是看着都是 ooooooooo&#xff0c;很好奇是如何实现的&#xff0c;所以查阅了源码&#xff0c;本文解读其核心实现逻辑&#xff0c;很有趣且巧妙的实现了这个功能。 发现一个很…

kaggle帕金森病进展预测大赛金牌方案分享

赛题背景 帕金森病 &#xff08;PD&#xff09; 是一种致残的脑部疾病&#xff0c;会影响运动、认知、睡眠和其他正常功能。不幸的是&#xff0c;目前没有治愈的方法 - 并且疾病会随着时间的推移而恶化。据估计&#xff0c;到2037年&#xff0c;美国将有1万人患有帕金森病&…

LeetCode 1080. Insufficient Nodes in Root to Leaf Paths【递归,二叉树】中等

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…

【Java|基础篇】详解static关键字和代码块

文章目录 1.前言2.static关键字2.1 static修饰成员变量2.2 static修饰成员方法 3. 代码块3.1 普通代码块3.2 静态代码块3.3 构造代码块 4.总结 1.前言 本文主要讲解static关键字以及代码块的执行顺序以及各部分代码块的作用. 2.static关键字 Java中的static关键字是用来修饰…

hive函数02

hive函数02 窗口函数 窗口函数&#xff08;Window functions )也叫做开窗函数、OLAP函数&#xff0c;其最大特点是∶输入值是从SELECT语句的结果集中的一行或多行的“窗口”中获取的。 窗口函数可以简单地解释为类似于聚合函数的计算函数&#xff0c;但是通过GROUP BY子句组合…

jenkins 常见问题汇总

1、win11 节点&#xff08;Error: Unable to access jarfile slave.jar&#xff09; jenkins 默认cd 进入到设置的目录下面&#xff0c;如果不是C盘的话&#xff0c;直接cd 进入不了其他盘&#xff0c;所以&#xff0c;需要在命令前面&#xff0c;加参数进入到对应盘符。eg:E:…

pandas1

pandas pandas 的核心是&#xff1a;‘Series’、‘DataFrame’、Index’三个类型 1. 创建DataFrame对象 1.1 通过二维数组创建 scores np.random.randint(60,101,(5,3)) scoresarray([[ 91, 87, 87],[100, 80, 61],[ 76, 84, 80],[ 81, 97, 69],[ 67, 77, 65]]…

如何查看SSL证书的有效期?(中科三方)

SSL证书能够对数据传输进行加密处理&#xff0c;对网站的真实性进行核验&#xff0c;是网站提升数据安全能力的重要手段&#xff0c;现在已经有越来越多的网站开始安装SSL证书。但为了保障加密技术的快速更新&#xff0c;SSL证书的有效期逐渐缩短&#xff0c;而一旦SSL证书失效…

【腾讯云 Finops Crane 集训营】心得体会

【腾讯云 Finops Crane 集训营】心得体会 一直在关注技术社区的活动&#xff0c;希望看到更多的新技术&#xff0c;最近在逛 CSDN 的过程中&#xff0c;让我有机会参加了腾讯云的 Finops Crane 开源项目的第一季活动&#xff0c;从而深入了解了这个项目。Crane是一种云资源分析…

PMP常考知识点整理

1十大知识领域之项目整合管理 ❒ 变更控制流程&#xff08;简化版&#xff09; 书面记录变更请求→分析影响→提交CCB进行审批→批准或者拒绝→若批准&#xff0c;先修改计划&#xff08;体现变更&#xff09;&#xff0c;再通知变更受影响相关方&#xff0c;最后再执行、追踪…

【PCIE720】 基于PCIe总线架构的高性能计算(HPC)硬件加速卡

板卡概述 PCIE720是一款基于PCI Express总线架构的高性能计算&#xff08;HPC&#xff09;硬件加速卡&#xff0c;板卡采用Xilinx的高性能28nm 7系列FPGA作为运算节点&#xff0c;在资源、接口以及时钟的优化&#xff0c;为高性能计算提供卓越的硬件加速性能。板卡一共具有5个F…

Linux---文件操作命令(find、which、read)

1. find命令 find [路径] [参数] 要查找的目录路径&#xff0c;可以是一个目录或文件名&#xff0c;也可以是多个路径&#xff0c;多个路径之间用空格分隔&#xff0c;如 果未指定路径&#xff0c;则默认为当前目录。 可选参数&#xff0c;用于指定查找的条件&#xff0c;可…

day37_JQuery

今日内容 零、 复习昨日 一、JQuery 零、 复习昨日 正则 匹配,筛选字符串[0-9a-zA-ZA-z\d\w]*?{3}{4,}{5,10}^$reg.test(字符) jquery js封装的库,封装js操作,可以用来操作事件,dom,动画,ajax$("#id") $("element") $(".class")$("选择器…

chatgpt赋能Python-pythonwhile遍历

Python中使用while循环遍历的优势 Python是一种高级语言&#xff0c;广泛用于Web开发、数据科学、人工智能等方面。Python提供了多种循环结构&#xff0c;其中while循环是一种非常常用的遍历方式。在本篇文章中&#xff0c;我们将介绍如何在Python中使用while循环遍历&#xf…

A2L文件的自动生成(Simulink/CANape)

目录 什么是A2L文件&#xff1f; 使用simulink生成A2L文件 A2L文件组成 characteristic measurement compu_method group simulink生成的A2L与CANape生成的A2L 如何自动修改simulink生成A2L文件使其适用于CANape&#xff1f; 所需文件 什么是A2L文件&#xff1f; A2…

27 KVM管理系统资源-管理虚拟CPU份额

文章目录 27 KVM管理系统资源-管理虚拟CPU份额27.1 概述27.2 操作步骤 27 KVM管理系统资源-管理虚拟CPU份额 27.1 概述 虚拟化环境下&#xff0c;同一主机上的多个虚拟机竞争使用物理CPU。为了防止某些虚拟机占用过多的物理CPU资源&#xff0c;影响相同主机上其他虚拟机的性能…

什么是数字化校园,校园怎么数字化?

教育数字化转型是目前教育领域的一个热门话题&#xff0c;那么到底什么是教育数字化转型&#xff1f;如何做好教育数字化转型&#xff1f;这就来回答一下&#xff01; 阅读本文你将了解&#xff1a; 什么是教育数字化转型&#xff1f;零代码平台如何撬动教育数字化转型&#…

真别去阿里面试,6年测开经验的真实面试经历.....

前几天我朋友跟我吐苦水&#xff0c;这波面试又把他打击到了&#xff0c;做了快6年软件测试员。。。为了进大厂&#xff0c;也花了很多时间和精力在面试准备上&#xff0c;也刷了很多题。但题刷多了之后有点怀疑人生&#xff0c;不知道刷的这些题在之后的工作中能不能用到&…

Linux·eventfd 原理与实践

1. eventfd/timerfd 简介 目前越来越多的应用程序采用事件驱动的方式实现功能&#xff0c;如何高效地利用系统资源实现通知的管理和送达就愈发变得重要起来。在Linux系统中&#xff0c;eventfd是一个用来通知事件的文件描述符&#xff0c;timerfd是的定时器事件的文件描述符。…

防火墙(三)

firewalld防火墙 一、firewalld概述firewalld与iptables的区别firewalld区域firewalld数据处理流程 二、firewalld防火墙的使用配置方法常用的firewalld-cmd命令选项 三、操作小实验 一、firewalld概述 firewalld防火墙是Centos 7 系统默认的防火墙管理工具&#xff0c;取代了…