有效的字母异位词

news2025/1/1 21:56:37

给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。

注意:若 s 和 t 中每个字符出现的次数都相同,则称 s 和 t 互为字母异位词。

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/valid-anagram

思路:

        先看暴力的解法,两层for循环,同时还要记录字符是否重复出现,很明显时间复杂度是 O(n^2),不过多介绍。

        接下来我们来看看更优的方式,数组其实就是一个简单哈希表,而且这道题目中字符串只有小写字符,那么就可以定义一个数组,来记录字符串s里字符出现的次数。

        这里我们可以定义了一个数组hash,大小为26,初始化为0。因为字符a到字符z的ASCII也是26个连续的数值,所以用数组较为合适(比较数组也是hash的一种)。

        定义一个数组叫做hash用来上记录字符串s里字符出现的次数.

        需要把字符映射到数组也就是哈希表的索引下标上,因为字符a到字符z的ASCII是26个连续的数值,所以字符a映射为下标0,相应的字符z映射为下标25。

        再遍历 字符串s的时候,只需要将 s[i] - ‘a’ 所在的元素做+1 操作即可,并不需要记住字符a的ASCII,只要求出一个相对数值就可以了。 这样就将字符串s中字符出现的次数,统计出来了。

        那看一下如何检查字符串t中是否出现了这些字符,同样在遍历字符串t的时候,对t中出现的字符映射哈希表索引上的数值再做-1的操作。

        那么最后检查一下,hash数组如果有的元素不为零0,说明字符串s和t一定是谁多了字符或者谁少了字符,return false。

        最后如果hash数组所有元素都为零0,说明字符串s和t是字母异位词,return true。

        时间复杂度为O(n),空间上因为定义是的一个常量大小的辅助数组,所以空间复杂度为O(1)。

代码如下:

class Solution {
public:
    bool isAnagram(string s, string t) {
        int hash[26] = {0};

        for(int i = 0; i < s.size(); i++)
        {
            hash[s[i] - 'a']++;
        }

        for(int i = 0; i < t.size(); i++)
        {
            hash[t[i] - 'a']--;
        }

        for(int i = 0; i < 26; i++)
        {
            if(hash[i] != 0)
            {
                return false;
            }
        }

        return true;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/454855.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java 将json中key值中带有下划线的部分转为驼峰格式

一、背景说明 在开发过程中&#xff0c;有时会遇到第三方厂商提供的接口返回结果不是严格按照驼峰命名&#xff0c;需要将其中带有下划线的字段进行格式化转换为驼峰命名。 如下图中的self_auth、user_id、user_name、creator_name 和 others_auths 等 key 值。 如果是对 JS…

Mysql 45讲和45问笔记(未完待续0203/04/24)

一、mysql 45讲 1&#xff09;索引的本质讲解 定义解释 所以是帮助Mysql高效获取数据的排好序的数据结构 索引数据结构 ①二叉树 ②红黑树 ③Hash表 ④B-Tree 原理讲解 可以看到右边的数据结构里面&#xff0c;是按照k-v来存数据结构的&#xff0c;key是col2的字段&#xf…

【Linux】线程-线程概念

线程概念 什么是线程线程的优点和缺点线程的用途和线程异常线程与进程的区别 什么是线程 实际上&#xff0c;线程是一个进程内部的控制序列&#xff0c;一个程序的一个执行线路就是一个线程。 并且一个进程中至少有一个线程&#xff0c;本质上&#xff0c;一个进程内部如果有多…

6. 树的入门

6. 树的入门 之前我们实现的符号表中&#xff0c;不难看出&#xff0c;符号表的增删查操作&#xff0c;随着元素个数N的增多&#xff0c;其耗时也是线性增多的&#xff0c;时间复杂度都是O(n),为了提高运算效率&#xff0c;接下来我们学习树这种数据结构。 6.1 树的基本定义 …

MybatisPlus-入门项目搭建、SQL日志打印、实体类注解、简单持久层操作

Mybatis-Plus mybatis plus概述 ​ Mybatis Plus &#xff08;opens new window&#xff09;简称 MP&#xff0c;它是一个MyBatis 的增加工具&#xff0c;在 MyBatis 的基础上只做增强不做改变&#xff0c;为简化开发、提高效率而生。 Mybatis Plus官网&#xff1a;https://…

拉格朗日函数对偶问题、KKT条件

一、概念介绍 KKT最优化条件是Karush(1939)以及Kuhn和Tucker(1951)先后独立发表出来的&#xff0c;但在Kuhn和Tucker发表之后才逐渐受到重视&#xff0c;因此多数情况下记载成库恩-塔克条件(Kuhn-Tucker conditions)。先介绍几个优化的概念。 1.1 优化 最优化问题&#xff0…

大彩串口屏新品发布:大彩7寸新品RS485/232双通讯口人机界面发布!

一、产品介绍 新品发布&#xff1a;大彩7寸新品RS485/232双通讯口人机界面发布&#xff01; 此次发布7.0寸外壳HMI产品采用普清800*480液晶屏、触摸选用电阻触摸&#xff0c;硬件性能上与M型医用级组态串口屏一样&#xff0c;软件上拥有炫酷的动画效果&#xff0c;页面切换流…

路侧激光雷达目标检测系统-篇2

本篇文章承接上文&#xff0c;主要阐述代码&#xff0c;分布的成果等工作。识别结果为单帧图片&#xff0c;每一张图片识别完之后&#xff0c;放在一起&#xff0c;就可以连续播放单帧文件&#xff0c;变成视频&#xff0c;或者直接在matlab图窗里面播放。关于这个函数的功能我…

HTML+CSS+JS 学习笔记(三)———Javascript(中)

&#x1f331;博客主页&#xff1a;大寄一场. &#x1f331;系列专栏&#xff1a;前端 &#x1f331;往期回顾&#xff1a;HTMLCSSJS 学习笔记&#xff08;三&#xff09;———Javascript(上) &#x1f618;博客制作不易欢迎各位&#x1f44d;点赞⭐收藏➕关注 目录 JavaScrip…

NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_统计语言模型的平滑策略---人工智能工作笔记0035

https://www.cnblogs.com/nickchen121/p/16470569.html#tid-458p3Y 参考这个文档学习 条件概率的链式法则:这个是需要去补充的知识. 首先我们来看一下上一节说到的预训练,可以看到,我们比如有个鹅鸭的分类问题, 这个鹅鸭分类我们是用10万张图片训练的模型,这个已经可以把这个…

3. 马氏决策过程

3. 马氏决策过程 3. 马氏决策过程3.1 马氏过程3.2 马氏奖励过程3.3 马氏决策过程3.4 贝尔曼方程与最优值 3. 马氏决策过程 3.1 马氏过程 3.2 马氏奖励过程 3.3 马氏决策过程 3.4 贝尔曼方程与最优值

如何从有故障的 SD 卡恢复文件

如何从损坏的 SD 卡中恢复文件&#xff1f; 您是否正在与损坏的 SD 卡作斗争&#xff1f;您的 SD 卡上是否有您无法承受的数据丢失&#xff0c;但它没有响应&#xff1f;好吧&#xff0c;我们为您解决了&#xff01; SD 卡是智能手机、相机和笔记本电脑中常用的存储设备。虽然…

2. 多臂老虎机问题

多臂老虎机问题 2. 多臂老虎机问题2.1 强化学习基本概念2.2 多臂老虎机与regret值2.3 随机多臂老虎机2.4 对抗多臂老虎机2.5 上下文多臂老虎机2. 多臂老虎机问题 2.1 强化学习基本概念 2.2 多臂老虎机与regret值

SpringCloud入门实战(七)-Hystrix入门简介

&#x1f4dd; 学技术、更要掌握学习的方法&#xff0c;一起学习&#xff0c;让进步发生 &#x1f469;&#x1f3fb; 作者&#xff1a;一只IT攻城狮 。 &#x1f490;学习建议&#xff1a;1、养成习惯&#xff0c;学习java的任何一个技术&#xff0c;都可以先去官网先看看&…

图像基本运算

图像基本运算 图像算数运算: 1)图像加法 示例代码&#xff1a; import cv2 import numpy as np img1 cv2.imread(‘…/datas/fengjing1.png’)#(546, 820, 3) img2 cv2.imread(‘…/datas/logo.png’)#(512, 512, 3) print(img1.shape) img1resize cv2.resize(img1, (24…

4.微服务项目实战---Sentinel--服务容错

4.1 高并发带来的问题 在微服务架构中&#xff0c;我们将业务拆分成一个个的服务&#xff0c;服务与服务之间可以相互调用&#xff0c;但是由于网络 原因或者自身的原因&#xff0c;服务并不能保证服务的 100% 可用&#xff0c;如果单个服务出现问题&#xff0c;调用这个服务…

活动报名|X-DecoderSEEM:从开放词库的图像理解到像素分割,如何用一个模型做N个任务理解M个模态...

2023年04月27日&#xff08;星期四&#xff09;11:00-12:00&#xff0c;由智源社区主办的「智源LIVE 第39期线上活动&#xff1a;X-Decoder&SEEM&#xff1a;从开放词库的图像理解到像素分割&#xff0c;如何用一个模型做N个任务理解M个模态本期活动将在线举办&#xff0c;…

echarts 环形图占比_环形图_仪表盘

Echarts 常用各类图表模板配置 注意&#xff1a; 这里主要就是基于各类图表&#xff0c;更多的使用 Echarts 的各类配置项&#xff1b; 以下代码都可以复制到 Echarts 官网&#xff0c;直接预览&#xff1b; 图标模板目录 Echarts 常用各类图表模板配置一、环形图占比二、环形…

ACT-1,才是你更想要的人工智能助手

2022年开年以来&#xff0c;人工智能发展迅速&#xff0c;Transformers 的广泛应用使得语言、代码和图像生成等领域取得了巨大进展。在这个背景下&#xff0c;Adept 公司推出了第一个大型模型 Action Transformer (ACT-1)&#xff0c;构建一个能在数字世界中采取行动的模型。 该…

〖ChatGPT实践指南 - 零基础扫盲篇①〗- ChatGPT简介、应用领域 及 哪些人应该为ChatGPT 的出现感到恐惧

文章目录 ⭐ 什么是 ChatGPT⭐ OpenAI 团队⭐ 详解 ChatGPT 聊天机器人⭐ ChatGPT的应用领域⭐ 作为程序员应该为 ChatGPT 的出现感到恐惧吗 有感于最近 ChatGPT 大火的原因&#xff0c;我这低眉顺眼的XXX也开始来蹭热度了。没办法&#xff0c;这玩意儿的热度太火了&#xff0c…