Medical Transformer: Gated Axial-Attention for Medical Image Segmentation
论文解读:
https://zhuanlan.zhihu.com/p/408662947
实验结果:
0 前言
0.1 原始的注意力机制
0.2 轴向注意力机制+ 相对位置编码
0.3 在轴向注意力机制基础上 +gated 门控单元
门控轴向注意机制,引入 四个门共同构成了门控机制,来控制相对位置编码向key、query和value提供的信息量。控制了相对位置编码对非局部上下文编码的影响。
根据相对位置编码获得的信息是否有用,栅极参数要么收敛于0,要么收敛于某个更高的值。如果一个相对的位置编码被准确地学习,与那些不被准确学习的编码相比,门控机制会赋予它较高的权重。
1. axialAttentionUNet
1.1 原始的 axialAttentionUNet
model = ResAxialAttentionUNet(AxialBlock, [1, 2, 4, 1], s= 0.125, **kwargs)
- 原始的轴注意力 + 残差网络构成的unet
ResAxialAttentionUNet(
(conv1): Conv2d(3, 8, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(conv2): Conv2d(8, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(conv3): Conv2d(128, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn3): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(layer1): Sequential(
(0): AxialBlock(
(conv_down): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(16, 32, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(16, 32, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(16, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(8, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(layer2): Sequential(
(0): AxialBlock(
(conv_down): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pooling): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(conv_up): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): AxialBlock(
(conv_down): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3): Sequential(
(0): AxialBlock(
(conv_down): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pooling): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): AxialBlock(
(conv_down): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): AxialBlock(
(conv_down): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): AxialBlock(
(conv_down): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4): Sequential(
(0): AxialBlock(
(conv_down): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(128, 256, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(128, 256, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pooling): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(conv_up): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(decoder1): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(decoder2): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoder3): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoder4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoder5): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(adjust): Conv2d(16, 2, kernel_size=(1, 1), stride=(1, 1))
(soft): Softmax(dim=1)
)
1.2 添加了门控单元的轴注意力网络
model = ResAxialAttentionUNet(AxialBlock_dynamic, [1, 2, 4, 1], s= 0.125, **kwargs)
在门控轴注意力网络中,
1. gated axial attention network
将axial attention layers 轴注意力层 全部换成门控轴注意力层。
ResAxialAttentionUNet(
(conv1): Conv2d(3, 8, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(conv2): Conv2d(8, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(conv3): Conv2d(128, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn3): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(layer1): Sequential(
(0): AxialBlock_dynamic(
(conv_down): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(16, 32, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(16, 32, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(16, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(8, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(layer2): Sequential(
(0): AxialBlock_dynamic(
(conv_down): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pooling): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(conv_up): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): AxialBlock_dynamic(
(conv_down): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3): Sequential(
(0): AxialBlock_dynamic(
(conv_down): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pooling): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): AxialBlock_dynamic(
(conv_down): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): AxialBlock_dynamic(
(conv_down): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): AxialBlock_dynamic(
(conv_down): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4): Sequential(
(0): AxialBlock_dynamic(
(conv_down): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(128, 256, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(128, 256, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pooling): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(conv_up): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(decoder1): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(decoder2): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoder3): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoder4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoder5): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(adjust): Conv2d(16, 2, kernel_size=(1, 1), stride=(1, 1))
(soft): Softmax(dim=1)
)
2. Medical Transformer
训练过程中,需要注意 前10个 epoch 并没有激活gated 门控单元,在10个epoch 之后才会开启。
2.1 local _ global
model = medt_net(AxialBlock,AxialBlock, [1, 2, 4, 1], s= 0.125, **kwargs)
LoGo network:
在局部 + 全局的网络中:
使用的是方式是:
- 使用原始轴注意力构成的unet , 没有使用本文提出的门控轴注意力单元.
- 使用了 local+ global training 的训练策略.
medt_net(
(conv1): Conv2d(3, 8, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(conv2): Conv2d(8, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(conv3): Conv2d(128, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn3): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(layer1): Sequential(
(0): AxialBlock(
(conv_down): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(16, 32, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(16, 32, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(16, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(8, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(layer2): Sequential(
(0): AxialBlock(
(conv_down): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pooling): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(conv_up): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): AxialBlock(
(conv_down): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(decoder4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoder5): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(adjust): Conv2d(16, 2, kernel_size=(1, 1), stride=(1, 1))
(soft): Softmax(dim=1)
(conv1_p): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(conv2_p): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(conv3_p): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1_p): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn2_p): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn3_p): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_p): ReLU(inplace=True)
(layer1_p): Sequential(
(0): AxialBlock(
(conv_down): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(16, 32, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(16, 32, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(16, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(layer2_p): Sequential(
(0): AxialBlock(
(conv_down): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pooling): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(conv_up): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): AxialBlock(
(conv_down): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3_p): Sequential(
(0): AxialBlock(
(conv_down): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pooling): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): AxialBlock(
(conv_down): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): AxialBlock(
(conv_down): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): AxialBlock(
(conv_down): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4_p): Sequential(
(0): AxialBlock(
(conv_down): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention(
(qkv_transform): qkv_transform(128, 256, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention(
(qkv_transform): qkv_transform(128, 256, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pooling): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(conv_up): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(decoder1_p): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(decoder2_p): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoder3_p): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoder4_p): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoder5_p): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoderf): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(adjust_p): Conv2d(16, 2, kernel_size=(1, 1), stride=(1, 1))
(soft_p): Softmax(dim=1)
)
2.2 Med transformer
model = medt_net(AxialBlock_dynamic,AxialBlock_wopos, [1, 2, 4, 1], s= 0.125, **kwargs)
使用的是方式是:
-
在全局分支中,使用提出的门控轴注意力单元。 而在局部分支中,使用的是原始轴注意力,并且没有位置编码。
-
使用了 local+ global training 的训练策略.
medt_net(
(conv1): Conv2d(3, 8, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(conv2): Conv2d(8, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(conv3): Conv2d(128, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn3): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(layer1): Sequential(
(0): AxialBlock_dynamic(
(conv_down): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(16, 32, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(16, 32, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(16, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(8, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(layer2): Sequential(
(0): AxialBlock_dynamic(
(conv_down): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pooling): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(conv_up): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): AxialBlock_dynamic(
(conv_down): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_dynamic(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(decoder4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoder5): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(adjust): Conv2d(16, 2, kernel_size=(1, 1), stride=(1, 1))
(soft): Softmax(dim=1)
(conv1_p): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(conv2_p): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(conv3_p): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1_p): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn2_p): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn3_p): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_p): ReLU(inplace=True)
(layer1_p): Sequential(
(0): AxialBlock_wopos(
(conv_down): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(conv1): Conv2d(16, 16, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(16, 32, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(16, 32, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(16, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(layer2_p): Sequential(
(0): AxialBlock_wopos(
(conv_down): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(conv1): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pooling): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(conv_up): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): AxialBlock_wopos(
(conv_down): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(conv1): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(32, 64, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3_p): Sequential(
(0): AxialBlock_wopos(
(conv_down): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pooling): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): AxialBlock_wopos(
(conv_down): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): AxialBlock_wopos(
(conv_down): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): AxialBlock_wopos(
(conv_down): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(64, 128, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv_up): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4_p): Sequential(
(0): AxialBlock_wopos(
(conv_down): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(hight_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(128, 256, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(width_block): AxialAttention_wopos(
(qkv_transform): qkv_transform(128, 256, kernel_size=(1,), stride=(1,), bias=False)
(bn_qkv): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_similarity): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(bn_output): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pooling): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(conv_up): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(decoder1_p): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(decoder2_p): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoder3_p): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoder4_p): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoder5_p): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(decoderf): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(adjust_p): Conv2d(16, 2, kernel_size=(1, 1), stride=(1, 1))
(soft_p): Softmax(dim=1)
)
3. reference:
3.1 十字交叉 注意力
https://github.com/yearing1017/CCNet_PyTorch/tree/master/CCNet
https://github.com/speedinghzl/CCNet
3.2 轴注意力机制
https://github.com/lucidrains/axial-attention
Axial Attention in Multidimensional Transformers
3.3 轴注意力机制的应用
MetNet: A Neural Weather Model for Precipitation Forecasting
Medical Transformer:
MeD T 文章解读
轴注意力网络:
https://blog.csdn.net/hxxjxw/article/details/121445561;
https://blog.csdn.net/weixin_43718675/article/details/106760382
https://zhuanlan.zhihu.com/p/408662947;
推荐阅读
https://blog.csdn.net/weixin_43718675/article/details/106760382#t4