多目标遗传算法NSGA-II原理详解及算法实现

news2024/11/23 8:41:49

        在接触学习多目标优化的问题上,经常会被提及到多目标遗传算法NSGA-II,网上也看到了很多人对该算法的总结,但真正讲解明白的以及配套用算法实现的文章很少,这里也对该算法进行一次详解与总结。会有侧重点的阐述,不会针对NSGA以及算法复杂度等等进行,有相关需求可自行学习了解。文末附有Python与Matlab两种的源代码案例。


在串讲算法原理之前,先说明几个关键词。

1、什么是非支配遗传算法

        非支配排序遗传算法NSGA (Non-dominated Sorting Genetic Algorithms)是由Srinivas和Deb于1995年提出的。这是一种基于Pareto最优概念的遗传算法,它是众多的多目标优化遗传算法中体现Goldberg思想最直接的方法。该算法就是在基本遗传算法的基础上,对选择再生方法进行改进:将每个个体按照它们的支配与非支配关系进行分层,再做选择操作,从而使得该算法在多目标优化方面得到非常满意的结果。

2、支配与非支配关系

        在最小化问题中,Vi\in {​{1,2,3...m}},f_{i}(x_{1})\leq f_{i}(x_{2}), \exists j\in {​{1,2,3...m}},f_{j}(x_{1})\leq f_{j}(x_{2})
理解起来就是,任意一个目标分量,x_{1}的值都不大于x_{2},并且在这些目标分量中至少存在一个目标分量x_{1}的值严格比x_{2}的值小,记作x_{1}\prec x_{2}.

2.1、种群分层

        当出现大量满足支配与非支配的个体时,会出现一种如下的分层现象。因为优化问题,通常存在一个解集,这些解之间就全体目标函数而言是无法比较优劣的,其特点是:无法在改进任何目标函数的同时不削弱至少一个其他目标函数。
        这种解称作非支配解(nondominated solutions)或Pareto最优解(Pareto optimal solutions),形象展示如下:

2.2、如何进行分支配排序

(1)设i=1;

(2)所有的j=1,2,...nj\neq i,按照以上定义比较个体x_{i}和个体x_{j}之间的支配与非支配关系;

(3)如果不存在任何一个个体x_{j}优于x_{i},,则x_{i}标记为非支配个体

(4)令i=i+1,转到步骤(2),直到找到所有的非支配个体。

     通过上述步骤得到的非支配个体集是种群的第一级非支配层,然后忽略这些已经标记的非支配个体(即这些个体不再进行下一轮比较),再遵循步骤(1)-(4),就会得到第二级非支配层。依此类推,直到整个种群被分层。

3、拥挤度(密度评估)

        为了获得对种群中某一特定解附近的密度估计, 我们沿着对应目标计算这个解两侧的两点间的平均距离。 这个值i_{distance }是对用最近的邻居作为顶点形成的长方体的周长的估计(称之为拥挤距离)。在图 1 中, 第i 个解在其前沿的拥挤距离(用实心圆标记)是长方体的平均边长(用虚线框表示。(用实心圆标记的点是同一非支配前沿的解)

        拥挤距离的计算需要根据每个目标函数值的大小对种群进行升序排序。此后,对于每个目标函数,边界解(对应函数最大最小值的解)被分配一个无穷距离值。所有中间的其他解被分配一个与两个相邻解的函数值的归一化差的绝对值相同的距离值。 对其他目标函数继续进行这种计算。总的拥挤距离值为对应于每个目标的各个距离之和。在计算拥挤距离之前, 归一化每个目标函数。 下面所示的算法概述了非支配性解集 中所有解的拥挤距离计算过程。对非支配性解集\Gamma进行拥挤距离分配

         这里, \Gamma [i]_{m}是指集合中第i个个体的第m个目标函数值,参数f_{m}^{max}  和f_{m}^{min}是第m 个目标函数的最大和最小值.

4、快速非支配性排序方法

        对于每个个体 i都设有以下两个参数n(i)S(i)n(i): 在种群中支配个体i 的解个体的数量。S(i): 被个体 i所支配的解个体的集合。

 
1)找到种群中所有 n(i)=0 的个体, 将它们存入当前集合F(1);
2)对于当前集合 F(1) 中的每个个体 j, 考察它所支配的个体集S(j) , 将集合 S(j)中的每个个体 k 的 n(k) 减去1, 即支配个体 k 的解个体数减1;( 对其他解除去被第一层支配的数量, 即减
1) 如 n(k)-1=0则将个体 k 存入另一个集H。
( 3) 将 F(1) 作为第一级非支配个体集合, 并赋予该集合内个体一个相同的非支配序 i(rank), 然后继续对 H 作上述分级操作并赋予相应的非支配序, 直到所有的个体都被分级。 其计算复杂度为,m为目标函数个数, N为种群大小。按照1 )、 2) 的方法完成所有分级,示意图如下。

 

5、偏序关系


        由于经过了排序和拥挤度的计算,群体中每个个体i都得到两个属性:非支配序i_{rank}和拥挤度i_{d},则定义偏序关系为\prec _{n}:当满足条件i_{rank}< j_{rank},或满足i_{rank}= j_{rank}i_{d}> j_{d}时,定义i\prec _{n}j。也就是说:如果两个个体的非支配排序不同,取排序号较小的个体(分层排序时,先被分离出来的个体);如果两个个体在同一级,取周围较不拥挤的个体。

6、 什么是精英策略


        NSGA-II 算法采用精英策略防止优秀个体的流失, 通过将父代和子代所有个体混合后进行
非支配排序的方法。 精英策略的执行步骤:

7、NSGA-II算法的基本思想

1) 随机产生规模为N的初始种群Pt,经过非支配排序、 选择、 交叉和变异, 产生子
代种群Qt, 并将两个种群联合在一起形成大小为2N的种群Rt,;
2)进行快速非支配排序, 同时对每个非支配层中的个体进行拥挤度计算, 根据非支
配关系以及个体的拥挤度选取合适的个体组成新的父代种群Pt+1﹔
3) 通过遗传算法的基本操作产生新的子代种群Qt+1, 将Pt+1与Qt+1合并形成新的种
群Rt, 重复以上操作, 直到满足程序结束的条件

  Matlab版本的数据案例(重点以拥挤度函数与非支配排序为主),网上案例很多都是使用matlab,请自行查阅学习。

function [FrontValue,MaxFront] = NonDominateSort(FunctionValue,Operation)
% 进行非支配排序
% 输入: FunctionValue, 待排序的种群(目标空间),的目标函数
%       Operation,     可指定仅排序第一个面,排序前一半个体,或是排序所有的个体, 默认为排序所有的个体
% 输出: FrontValue, 排序后的每个个体所在的前沿面编号, 未排序的个体前沿面编号为inf
%       MaxFront,   排序的最大前面编号

    if Operation == 1
        Kind = 2; 
    else
        Kind = 1;  %√
    end
	[N,M] = size(FunctionValue);
    
    MaxFront = 0;
    cz = zeros(1,N);  %%记录个体是否已被分配编号
    FrontValue = zeros(1,N)+inf; %每个个体的前沿面编号
    [FunctionValue,Rank] = sortrows(FunctionValue);
    %sortrows:由小到大以行的方式进行排序,返回排序结果和检索到的数据(按相关度排序)在原始数据中的索引
    
    %开始迭代判断每个个体的前沿面,采用改进的deductive sort,Deb非支配排序算法
    while (Kind==1 && sum(cz)<N) || (Kind==2 && sum(cz)<N/2) || (Kind==3 && MaxFront<1)
        MaxFront = MaxFront+1;
        d = cz;
        for i = 1 : N
            if ~d(i)
                for j = i+1 : N
                    if ~d(j)
                        k = 1;
                        for m = 2 : M
                            if FunctionValue(i,m) > FunctionValue(j,m)  %比较函数值,判断个体的支配关系
                                k = 0;
                                break;
                            end
                        end
                        if k == 1
                            d(j) = 1;
                        end
                    end
                end
                FrontValue(Rank(i)) = MaxFront;
                cz(i) = 1;
            end
        end
    end
end


%% 非支配排序伪代码
% def fast_nondominated_sort( P ):
% F = [ ]
% for p in P:
% Sp = [ ] #记录被个体p支配的个体
% np = 0  #支配个体p的个数
% for q in P:
% if p > q:                #如果p支配q,把q添加到Sp列表中
% Sp.append( q )  #被个体p支配的个体
% else if p < q:        #如果p被q支配,则把np加1
% np += 1  #支配个体p的个数
% if np == 0:
% p_rank = 1        #如果该个体的np为0,则该个体为Pareto第一级
% F1.append( p )
% F.append( F1 )
% i = 0
% while F[i]:
% Q = [ ]
% for p in F[i]:
% for q in Sp:        #对所有在Sp集合中的个体进行排序
% nq -= 1
% if nq == 0:     #如果该个体的支配个数为0,则该个体是非支配个体
% q_rank = i+2    #该个体Pareto级别为当前最高级别加1。此时i初始值为0,所以要加2
% Q.append( q )
% F.append( Q )
% i += 1
function CrowdDistance = CrowdDistances(FunctionValue,FrontValue)
%分前沿面计算种群中每个个体的拥挤距离

    [N,M] = size(FunctionValue);
    CrowdDistance = zeros(1,N);
    Fronts = setdiff(unique(FrontValue),inf);
    for f = 1 : length(Fronts)
        Front = find(FrontValue==Fronts(f));
        Fmax = max(FunctionValue(Front,:),[],1);
        Fmin = min(FunctionValue(Front,:),[],1);
        for i = 1 : M
            [~,Rank] = sortrows(FunctionValue(Front,i));
            CrowdDistance(Front(Rank(1))) = inf;
            CrowdDistance(Front(Rank(end))) = inf;
            for j = 2 : length(Front)-1
                CrowdDistance(Front(Rank(j))) = CrowdDistance(Front(Rank(j)))+(FunctionValue(Front(Rank(j+1)),i)-FunctionValue(Front(Rank(j-1)),i))/(Fmax(i)-Fmin(i));
            end
        end
    end
end

 下面将给出Python版本的案例实现。

# Program Name: NSGA-II.py
# author;lxy
# Time:2023/03/11

#Importing required modules
import math
import random
import matplotlib.pyplot as plt

#First function to optimize
def function1(x):
    value = -x**2
    return value

#Second function to optimize
def function2(x):
    value = -(x-2)**2
    return value

#Function to find index of list,且是找到的第一个索引
def index_of(a,list):
    for i in range(0,len(list)):
        if list[i] == a:
            return i
    return -1

#Function to sort by values 找出front中对应值的索引序列
def sort_by_values(list1, values):
    sorted_list = []
    while(len(sorted_list)!=len(list1)):
        if index_of(min(values),values) in list1:
            sorted_list.append(index_of(min(values),values))
        values[index_of(min(values),values)] = math.inf
    return sorted_list

#Function to carry out NSGA-II's fast non dominated sort
def fast_non_dominated_sort(values1, values2):
    S=[[] for i in range(0,len(values1))]   #len(values1)个空列表
    front = [[]]
    n=[0 for i in range(0,len(values1))]
    rank = [0 for i in range(0, len(values1))]
    #将front0全部整理出来了,并未对front1-n等进行整理
    for p in range(0,len(values1)):
        S[p]=[]
        n[p]=0
        for q in range(0, len(values1)):
            if (values1[p] > values1[q] and values2[p] > values2[q]) or (values1[p] >= values1[q] and values2[p] > values2[q]) or (values1[p] > values1[q] and values2[p] >= values2[q]):
                if q not in S[p]:
                    S[p].append(q)
            elif (values1[q] > values1[p] and values2[q] > values2[p]) or (values1[q] >= values1[p] and values2[q] > values2[p]) or (values1[q] > values1[p] and values2[q] >= values2[p]):
                n[p] = n[p] + 1
        if n[p]==0:
            rank[p] = 0
            if p not in front[0]:
                front[0].append(p)
    i = 0
    #该循环能将所有的个体全部进行分类,显然最后一层的个体中,没有可以支配的个体了
    while(front[i] != []):
        Q=[]
        for p in front[i]:
            for q in S[p]:
                n[q] =n[q] - 1
                if( n[q]==0):
                    rank[q]=i+1
                    if q not in Q:
                        Q.append(q)
        i = i+1
        front.append(Q)

    del front[len(front)-1]    #删除了最后一层无支配个体的front层,最后一层是空集
    return front

#Function to calculate crowding distance  同层之间的一个计算
def crowding_distance(values1, values2, front):
    # distance = [0 for i in range(len(front))]
    lenth= len(front)
    for i in range(lenth):
        distance = [0 for i in range(lenth)]
        sorted1 = sort_by_values(front, values1[:])  #找到front中的个体索引序列
        sorted2 = sort_by_values(front, values2[:])  #找到front中的个体索引序列
        distance[0] = 4444
        distance[lenth-1] = 4444
        for k in range(2,lenth-1):
            distance[k] = distance[k]+ (values1[sorted1[k+1]] - values1[sorted1[k-1]])/(max(values1)-min(values1))
            # print("/n")
            print("k:",k)
            print("distance[{}]".format(k),distance[k])
        for k in range(2,lenth-1):
            distance[k] = distance[k]+ (values2[sorted2[k+1]] - values2[sorted2[k-1]])/(max(values2)-min(values2))
    return distance

# #Function to carry out the crossover
def crossover(a,b):
    r=random.random()
    if r>0.5:
        return mutation((a+b)/2)
    else:
        return mutation((a-b)/2)

# #Function to carry out the mutation operator
def mutation(solution):
    mutation_prob = random.random()
    if mutation_prob <1:
        solution = min_x+(max_x-min_x)*random.random()
    return solution

#Main program starts here
pop_size = 10
max_gen = 100

#Initialization
min_x=-55
max_x=55
solution=[min_x+(max_x-min_x)*random.random() for i in range(0,pop_size)]
print('solution',solution)
gen_no=0
while(gen_no<max_gen):
    print('\n')
    print('gen_no:迭代次数',gen_no)
    function1_values = [function1(solution[i])for i in range(0,pop_size)]
    function2_values = [function2(solution[i])for i in range(0,pop_size)]
    print('function1_values:',function1_values)
    print('function2_values:', function2_values)
    non_dominated_sorted_solution = fast_non_dominated_sort(function1_values[:],function2_values[:])
    print('front',non_dominated_sorted_solution)
    # print("The best front for Generation number ",gen_no, " is")
    # for valuez in non_dominated_sorted_solution[0]:
    #     print("solution[valuez]",round(solution[valuez],3),end=" ")
#     print("\n")
    crowding_distance_values=[]
    for i in range(0,len(non_dominated_sorted_solution)):
        crowding_distance_values.append(crowding_distance(function1_values[:],function2_values[:],non_dominated_sorted_solution[i][:]))
    print("crowding_distance_values",crowding_distance_values)
    solution2 = solution[:]
    #Generating offsprings
    while(len(solution2)!=2*pop_size):
        a1 = random.randint(0,pop_size-1)
        b1 = random.randint(0,pop_size-1)
        solution2.append(crossover(solution[a1],solution[b1]))
    print('solution2',solution2)
    function1_values2 = [function1(solution2[i])for i in range(0,2*pop_size)]
    function2_values2 = [function2(solution2[i])for i in range(0,2*pop_size)]
    non_dominated_sorted_solution2 = fast_non_dominated_sort(function1_values2[:],function2_values2[:])  #2*pop_size
    print('non_dominated_sorted_solution2', non_dominated_sorted_solution2)
    # print("\n")
    crowding_distance_values2=[]
    for i in range(0,len(non_dominated_sorted_solution2)):
        crowding_distance_values2.append(crowding_distance(function1_values2[:],function2_values2[:],non_dominated_sorted_solution2[i][:]))

    print('crowding_distance_values2',crowding_distance_values2)
    new_solution= []
    for i in range(0,len(non_dominated_sorted_solution2)):
        non_dominated_sorted_solution2_1 = [index_of(non_dominated_sorted_solution2[i][j],non_dominated_sorted_solution2[i] ) for j in range(0,len(non_dominated_sorted_solution2[i]))]
        print('non_dominated_sorted_solution2_1:',non_dominated_sorted_solution2_1)
        front22 = sort_by_values(non_dominated_sorted_solution2_1[:], crowding_distance_values2[i][:])
        print("front22",front22)
        front = [non_dominated_sorted_solution2[i][front22[j]] for j in range(0,len(non_dominated_sorted_solution2[i]))]
        print('front',front)
        front.reverse()
        for value in front:
            new_solution.append(value)
            if(len(new_solution)==pop_size):
                break
        if (len(new_solution) == pop_size):
            break
    solution = [solution2[i] for i in new_solution]
    gen_no = gen_no + 1
#
# Lets plot the final front now
function1 = [i * -1 for i in function1_values]
function2 = [j * -1 for j in function2_values]
plt.xlabel('Function 1', fontsize=15)
plt.ylabel('Function 2', fontsize=15)
plt.scatter(function1, function2)
plt.show()

 最终得出的Pareto前沿解的图像为:

        如还有其他问题,欢迎留言沟通。

        后续应该会针对具体的现实问题如生产调度问题,车辆路径问题等进行算法实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/404248.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

理解并解决【跨域】问题--通过代理或【CROS】

文章目录一.理解跨域问题引起跨域问题的原因浏览器的同源策略二.跨域问题的解决办法解决方法1-------代理&#xff08;前端配置&#xff09;解决方法2-----开启跨域资源共享CORS&#xff08;后端&#xff09;知识小贴士一.理解跨域问题 主要出现在前后端分离项目 引起跨域问题…

磨金石教育摄影技能干货分享|春之旅拍

春天来一次短暂的旅行&#xff0c;你会选择哪里呢&#xff1f;春天的照片又该如何拍呢&#xff1f;看看下面的照片&#xff0c;或许能给你答案。照片的构图很巧妙&#xff0c;画面被分成两部分&#xff0c;一半湖泊&#xff0c;一半绿色树林。分开这些的是一条斜向的公路&#…

合并两个链表(自定义位置合并与有序合并)LeetCode--OJ题详解

图片: csdn 自定义位置合并 问题&#xff1a; 给两个链表 list1 和 list2 &#xff0c;它们包含的元素分别为 n 个和 m 个。 请你将 list1 中 下标从 a 到 b 的全部节点都删除&#xff0c;并将list2 接在被删除节点 的位置。 比如&#xff1a; 输入&#xff1a;list1 [1…

【STL】list剖析及模拟实现

✍作者&#xff1a;阿润菜菜 &#x1f4d6;专栏&#xff1a;C 初识list 1. list基本概况 list是可以在常数范围内在任意位置进行插入和删除的序列式容器&#xff0c;并且该容器可以前后双向迭代。list的底层是双向链表结构&#xff0c;双向链表中每个元素存储在互不相关的独立…

前端前沿web 3d可视化技术 ThreeJS学习全记录

前端前沿web 3d可视化技术 随着浏览器性能和网络带宽的提升 使得3D技术不再是桌面的专利 打破传统平面展示模式 前端方向主要流向的3D图形库包括Three.js和WebGL WebGL灵活高性能&#xff0c;但代码量大&#xff0c;难度大&#xff0c;需要掌握很多底层知识和数学知识 Threej…

卷积神经网络模型之——LeNet

目录LeNet模型参数介绍该网络特点关于C3与S2之间的连接关于最后的输出层子采样参考LeNet LeNet是一个用来识别手写数字的最经典的卷积神经网络&#xff0c;是Yann LeCun在1998年设计并提出的。Lenet的网络结构规模较小&#xff0c;但包含了卷积层、池化层、全连接层&#xff0…

Mr. Cappuccino的第49杯咖啡——冒泡APP(升级版)之基于Docker部署Gitlab

冒泡APP&#xff08;升级版&#xff09;之基于Docker部署Gitlab基于Docker安装Gitlab登录Gitlab创建Git项目上传代码使用Git命令切换Git地址使用IDE更换Git地址基于Docker安装Gitlab 查看beginor/gitlab-ce镜像版本 下载指定版本的镜像 docker pull beginor/gitlab-ce:11.3.0…

c# 源生成器

本文概述了 .NET Compiler Platform&#xff08;“Roslyn”&#xff09;SDK 附带的源生成器。 通过源生成器&#xff0c;C# 开发人员可以在编译用户代码时检查用户代码。 生成器可以动态创建新的 C# 源文件&#xff0c;这些文件将添加到用户的编译中。 这样&#xff0c;代码可以…

线程(一)

线程 1. 线程 定义&#xff1a;线程是进程的组成部分&#xff0c;不同的线程执行不同的任务&#xff0c;不同的功能模块&#xff0c;同时线程使用的资源师由进程管理&#xff0c;主要分配CPU和内存。 ​ 在进程中&#xff0c;线程执行的方式是抢占式执行操作&#xff0c;需要考…

33--Vue-前端开发-使用Vue脚手架快速搭建项目

一、vue脚手架搭建项目 node的安装: 官方下载,一路下一步 node命令类似于python npm命令类似于pip 使用npm安装第三方模块,速度慢一些,需换成淘宝镜像 以后用cmpm代替npm的使用 npm install -g cnpm --registry=https://registry.npm.taobao.org安装脚手架: cnpm inst…

汉诺塔--课后程序(Python程序开发案例教程-黑马程序员编著-第6章-课后作业)

实例3&#xff1a;汉诺塔 汉诺塔是一个可以使用递归解决的经典问题&#xff0c;它源于印度一个古老传说&#xff1a;大梵天创造世界的时候做了三根金刚石柱子&#xff0c;其中一根柱子从下往上按照从大到小的顺序摞着64片黄金圆盘&#xff0c;大梵天命令婆罗门把圆盘从下面开始…

C++回顾(二十)—— vector容器 和 deque容器

20.1 vector容器 20.1.1 vector容器简介 vector是将元素置于一个动态数组中加以管理的容器。vector可以随机存取元素&#xff08;支持索引值直接存取&#xff0c; 用[]操作符或at()方法&#xff09;。vector尾部添加或移除元素非常快速。但是在中部或头部插入元素或移除元素比…

es6的class(类)

目录 一、class&#xff08;类&#xff09;的语法 二、代码 三、效果 一、class&#xff08;类&#xff09;的语法 ES6 提供了更接近传统语言的写法&#xff0c;引入了 Class&#xff08;类&#xff09;这个概念&#xff0c;作为对象的模板。通过class关键字&#xff0c;可以…

Java基础(二):原码、反码、补码及进制之间的运算

Java基础系列文章 Java基础(一)&#xff1a;语言概述 Java基础(二)&#xff1a;原码、反码、补码及进制之间的运算 Java基础(三)&#xff1a;数据类型与进制 目录一、不同进制的表示方式二、二进制三、进制之间的转换四、byte的取值范围一、不同进制的表示方式 所有数字在计…

Leetcode 141.环形链表 142环形链表II

141环形链表 文章目录快慢指针快慢指针 代码思路&#xff1a; slow 和fast 指向 head slow走一步&#xff0c;fast走两步 没有环&#xff1a; fast每次走2步 &#xff0c;如果 fast 最终遇到NULL(链表中的元素是 偶数)或者fast->next(链表中的元素是 奇数)遇到NULL&#xf…

【ArcGIS Pro二次开发】(12):txt文件和Excel文件的读写

在Arcgis Pro的工作流中&#xff0c;数据的输入是很常见的。这里以TXT和Excel两种文件为例&#xff0c;在SDK中实现数据的读取和写入。 一、txt文件的读写 txt文件的读写相对简单&#xff0c;可以用Arcgis Pro自带的OpenItemDialog打开txt文件&#xff0c;并直接读取&#xff…

浙江大学海宁IMBA提面经验分享

先来介绍一下我的个人情况&#xff1a;本人毕业于浙江一所普通的本科院校&#xff0c;毕业已经6年了&#xff0c;在一家互联网公司担任市场部经理。其实在参加浙大IMBA项目提面之前&#xff0c;我也参加了浙大MBA项目的提面&#xff0c;可惜只拿到了良好的结果&#xff0c;所以…

力扣-每天的领导和合伙人

大家好&#xff0c;我是空空star&#xff0c;本篇带大家了解一道简单的力扣sql练习题。 文章目录前言一、题目&#xff1a;1693. 每天的领导和合伙人二、解题1.正确示范①提交SQL运行结果2.正确示范②提交SQL运行结果3.正确示范③提交SQL运行结果4.正确示范④提交SQL运行结果5.…

SWMM从入门到实践教程 04 快速入门案例的模拟执行

文章目录1 模拟时间的设置2 模拟执行3 报告查看3.1 完整报告3.2 总结报告4 纵断面查看5 结果播放1 模拟时间的设置 在左侧双击Options中的Dates&#xff0c;即可弹出时间的设置。此处为了教学&#xff0c;建议仅模拟6个小时&#xff0c;加快结果的生成。实际项目中&#xff0c;…

Gradle 的下载安装教程

Gradle 8.0.1 下载安装教程笔者的环境&#xff1a; Java 17.0.1 Gradle 8.0.1 Windows 10 教育版 64位 在继续阅读本教程之前&#xff0c;需要先完成 JDK 的安装。JDK 需要选择 8 及以上的版本。关于 JDK 的安装&#xff0c;可见笔者的另一篇博客&#xff1a; Java 的下载安…