目录链接:
力扣编程题-解法汇总_分享+记录-CSDN博客
GitHub同步刷题项目:
https://github.com/September26/java-algorithms
原题链接:力扣
描述:
给你一个正整数数组 nums
。每一次操作中,你可以从 nums
中选择 任意 一个数并将它减小到 恰好 一半。(注意,在后续操作中你可以对减半过的数继续执行操作)
请你返回将 nums
数组和 至少 减少一半的 最少 操作数。
示例 1:
输入:nums = [5,19,8,1] 输出:3 解释:初始 nums 的和为 5 + 19 + 8 + 1 = 33 。 以下是将数组和减少至少一半的一种方法: 选择数字 19 并减小为 9.5 。 选择数字 9.5 并减小为 4.75 。 选择数字 8 并减小为 4 。 最终数组为 [5, 4.75, 4, 1] ,和为 5 + 4.75 + 4 + 1 = 14.75 。 nums 的和减小了 33 - 14.75 = 18.25 ,减小的部分超过了初始数组和的一半,18.25 >= 33/2 = 16.5 。 我们需要 3 个操作实现题目要求,所以返回 3 。 可以证明,无法通过少于 3 个操作使数组和减少至少一半。
示例 2:
输入:nums = [3,8,20] 输出:3 解释:初始 nums 的和为 3 + 8 + 20 = 31 。 以下是将数组和减少至少一半的一种方法: 选择数字 20 并减小为 10 。 选择数字 10 并减小为 5 。 选择数字 3 并减小为 1.5 。 最终数组为 [1.5, 8, 5] ,和为 1.5 + 8 + 5 = 14.5 。 nums 的和减小了 31 - 14.5 = 16.5 ,减小的部分超过了初始数组和的一半, 16.5 >= 31/2 = 16.5 。 我们需要 3 个操作实现题目要求,所以返回 3 。 可以证明,无法通过少于 3 个操作使数组和减少至少一半。
提示:
1 <= nums.length <= 105
1 <= nums[i] <= 107
解题思路:
* 2208. 将数组和减半的最少操作次数
* 解题思路:
* 最简单的思路,一定是每次排序取最大值,然后把最大值减半,减半后的值再加入集合进行排序重新取最大值,
* 所以插入集合的时候,如果使用lng的方法,那么时间复杂度就是n*lng,就是可满足的。
代码:
class Solution2208
{
public:
int halveArray(vector<int> &nums)
{
multiset<double> mySet;
double sum = 0.0;
for (int i = 0; i < nums.size(); i++)
{
sum += nums[i];
mySet.insert(nums[i] * 1.0);
}
int times = 0;
double currentSum = 0;
while (currentSum < sum / 2)
{
auto lastElement = mySet.rbegin();
double value = (*lastElement) / 2.0;
currentSum += value;
mySet.erase(std::prev(lastElement.base()));
mySet.insert(value);
times++;
}
return times;
}
};