QT之OpenGL帧缓冲
- 1. 概述
- 1.1 帧缓冲的创建与删除
- 1.2 帧缓冲的数据来源
- 1.2.1 数据源与帧缓冲的关系
- 1.2.2 纹理Attachment
- 1.2.3 渲染缓冲对象Attachment
- 1.2.4 两者的区别
- 1.2.5 关于两者的使用场景
- 2. Demo
- 3. 后期处理
- 4. 参考
1. 概述
OpenGL管线的最终渲染目的地被称作帧缓冲(framebuffer)
,它由用于写入颜色值的颜色缓冲
、用于写入深度信息的深度缓冲
和允许根据一些条件丢弃特定片段的模板缓冲
组合而成,它被储存在内存中。
1.1 帧缓冲的创建与删除
-
创建
unsigned int fbo; /* 第一个是要创建的帧缓存的数目 第二个是指向存储一个或者多个ID的变量或数组的指针 默认帧缓冲的id是0 */ glGenFramebuffers(1, &fbo);
-
绑定激活
/* GL_READ_FRAMEBUFFER : 绑定到GL_READ_FRAMEBUFFER的帧缓冲将会使用在所有像是glReadPixels的读取操作中 GL_DRAW_FRAMEBUFFER : 而绑定到GL_DRAW_FRAMEBUFFER的帧缓冲将会被用作渲染、清除等写入操作的目标 GL_FRAMEBUFFER : 通常都会使用GL_FRAMEBUFFER,绑定到两个上 */ glBindFramebuffer(GL_FRAMEBUFFER, fbo);
-
删除
glDeleteFramebuffers(1, &fbo);
-
OpenGL允许自定义帧缓冲,一个完整帧缓冲需要满足以下条件:
- 附加至少一个缓冲(颜色、深度或模板缓冲)
- 至少有一个颜色
attachment
- 所有的
attachment
都必须是完整的(保存在内存) - 每个缓冲都应有相同的样本数
-
完整性检查
if(glCheckFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE)
1.2 帧缓冲的数据来源
1.2.1 数据源与帧缓冲的关系
-
只是用纹理Attachment
-
只是用渲染缓冲对象Attachment
-
纹理Attachment与渲染缓冲对象Attachment结合使用
注:
GL_COLOR_ATTACHMENT
的数量可以通过GL_MAX_COLOR_ATTACHMENTS
获取- 一个帧缓冲至少要有一个颜色缓冲Attachment
- 这里的
Attachment
仅仅是一个附着点,并不是将数据拷贝到FBO中 FBO
提供了一种高效的切换机制,将前面帧缓冲关联的图形从FBO分离,然后把心的帧缓冲图像关联到FBO
。在帧缓冲关联图像之间切换比在FBO
之间切换要快的多。 切换函数如下:// 切换纹理图像 glFramebufferTexture2D(); // 切换渲染缓冲区 glFramebufferRenderbuffer();
1.2.2 纹理Attachment
把一个纹理附加附加到缓冲区的时候,所有的渲染指令都将会写入到这个纹理中,就像他是一个普通的颜色/深度或模板缓冲一样。使用纹理的优点是,所有渲染操作的结果将会被存储在一个纹理图像中,可以很方便的在着色器中只是用。
- 纹理创建
unsigned int texture; glGenTextures(1, &texture); glBindTexture(GL_TEXTURE_2D, texture); /* 这里的data部分设置为NULL,表示仅仅分配了内存而没有进行数据填充。 纹理的填充会在渲染到帧缓冲之后进行 如果想将屏幕渲染到一个更小或更大的纹理上,需要(在渲染到帧缓冲之前)再次调用glViewport,使用纹理的新维度作为参数,否则只有一小部分的纹理或屏幕会被渲染到这个纹理上 */ glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 800, 600, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); // 设置纹理过滤方式 压缩 采用线性采样 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); // 设置纹理过滤方式 放大 采用线性采样 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
- 附加到帧缓冲
/* target:帧缓冲的目标(绘制、读取或者两者皆有) attachment:我们想要附加的附件类型。当前我们正在附加一个颜色附件。注意最后的0意味着我们可以附加多个颜色附件。我们将在之后的教程中提到。 textarget:你希望附加的纹理类型 texture:要附加的纹理本身 level:多级渐远纹理的级别。我们将它保留为0。 */ glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture, 0); /* 除了颜色附件之外,还可以附加一个深度和模板缓冲纹理到帧缓冲对象中。要附加深度缓冲,需要将附件类型设置为GL_DEPTH_ATTACHMENT。注意纹理的格式(Format)和内部格式(Internalformat)类型将变为GL_DEPTH_COMPONENT,来反映深度缓冲的储存格式。要附加模板缓冲的话,需要将第二个参数设置为GL_STENCIL_ATTACHMENT,并将纹理的格式设定为GL_STENCIL_INDEX。 也可以将深度缓冲和模板缓冲附加为一个单独的纹理。纹理的每32位数值将包含24位的深度信息和8位的模板信息。要将深度和模板缓冲附加为一个纹理的话,我们使用GL_DEPTH_STENCIL_ATTACHMENT类型,并配置纹理的格式,让它包含合并的深度和模板值。将一个深度和模板缓冲附加为一个纹理到帧缓冲的例子如下所示: */ glTexImage2D( GL_TEXTURE_2D, 0, GL_DEPTH24_STENCIL8, 800, 600, 0, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, NULL ); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, texture, 0);
1.2.3 渲染缓冲对象Attachment
渲染缓冲对象(Renderbuffer Object)
是在纹理之后引入OpenGL
的,它也是一个真正的缓冲,它会将数据存储为OpenGL
原生的渲染格式,它是为了离屏渲染到帧缓冲优化过的。
- 创建
unsigned int rbo; glGenRenderbuffers(1, &rbo);
- 绑定
glBindRenderbuffer(GL_RENDERBUFFER, rbo);
- 创建深度和模板缓冲对象
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCIL8, 800, 600);
- 附加到渲染缓冲对象
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_RENDERBUFFER, rbo);
注:
-
因为它的数据已经是原生的格式了,当写入或者复制它的数据到其它缓冲中时是非常快的。所以,交换缓冲这样的操作在使用渲染缓冲对象时会非常快。我们在每个渲染迭代最后使用的
glfwSwapBuffers
,也可以通过渲染缓冲对象实现:只需要写入一个渲染缓冲图像,并在最后交换到另外一个渲染缓冲就可以了。渲染缓冲对象对这种操作非常完美。
1.2.4 两者的区别
- 纹理是可读可写的,而渲染缓冲对象则是只写的,但可以使用glReadPixels来读取它(从当前绑定的帧缓冲而不是
Attachment
本身中返回特定区域的像素)
1.2.5 关于两者的使用场景
- 如果不需要从一个缓冲中采样,此时使用
渲染缓冲对象
更好些 - 如果需要从一个缓冲中进行采样颜色或深度值等数据,此时使用
纹理Attachment
更合理 - 两者在性能方面不会差别非常大
2. Demo
将场景渲染到一个小窗口中,源码链接
3. 后期处理
Demo效果展示如下:
-
反相(Inversion)
-
灰度(Grayscale)
-
加权(Weighted)
-
核(kernel)
在一个纹理图像上做后期处理的另外一个好处是,我们可以从纹理的其它地方采样颜色值。比如说我们可以在当前纹理坐标的周围取一小块区域,对当前纹理值周围的多个纹理值进行采样。
核(Kernel)(或卷积矩阵(Convolution Matrix))是一个类矩阵的数值数组,它的中心为当前的像素,它会用它的核值乘以周围的像素值,并将结果相加变成一个值。锐化(Sharpen)
模糊(Blur)
边缘检测(Edge-detection)
4. 参考
-
OpenGL Learn
-
http://www.songho.ca/opengl/gl_fbo.html
-
http://www.songho.ca/opengl/gl_fbo.html的翻译版
-
FBO使用示例
-
单独使用 渲染缓冲对象示例