目录
前言
1. 1/4悬架模型
2.仿真分析
2.1仿真模型
2.2仿真结果
2.1 形①
2.2 形②
3. 总结
前言
上两篇博客我们介绍了神经网络补偿+控制律的仿真测试,从仿真结果我们可以得知神经网络具有逼近扰动,并将其补偿的作用。
上两篇文章链接:
基于神经网络(RBF)补偿的双关节机械手臂自适应控制_Mr. 邹的博客-CSDN博客
基于神经网络的滑模鲁棒控制_Mr. 邹的博客-CSDN博客
本篇文章我们将其应用于2自由度悬架
1. 1/4悬架模型
2.仿真分析
2.1仿真模型
2.2仿真结果
这里我们仍以车身加速、悬架动扰度、车轮动变形为性能指标,并且将控制输入和神经网络逼近扰动值展现如下所示:
这里值得说明的是,对于神经网络自适律参数γ的选取至关重要,这里展示不同γ调节的几组控制效果:
2.1 形①
这里我们将γ调节的很大,仿真结果如下所示:
2.2 形②
这里选取γ适中,仿真结果如下所示:
3. 总结
①可以看到对比两种不同调节参数下的仿真结果,第一种将车身加速度和悬架动扰度改善特别好,而且将扰动估计的很准,但是将车轮动变形恶化,而且控制输入所需要的能耗很大。
②第二种车身加速度、悬架动扰度和车轮动变形都能调节好,但是扰动却没能估计