预训练BERT

news2024/11/19 1:29:33
  • 与PTB数据集相比,WikiText-2数据集保留了原来的标点符号、大小写和数字,并且比PTB数据集大了两倍多。

  • 我们可以任意访问从WikiText-2语料库中的一对句子生成的预训练(遮蔽语言模型和下一句预测)样本。

  • 原始的BERT有两个版本,其中基本模型有1.1亿个参数,大模型有3.4亿个参数。

  • 在预训练BERT之后,我们可以用它来表示单个文本、文本对或其中的任何词元。

  • 在实验中,同一个词元在不同的上下文中具有不同的BERT表示。这支持BERT表示是上下文敏感的。

目录

1.用于预训练BERT的数据集

1.1为预训练任务定义辅助函数

1.1.1生成下一句预测任务的数据

1.1.2生成遮蔽语言模型任务的数据

1.2将文本转换为预训练数据集

2.预训练BERT

2.1预训练BERT

2.2用BERT表示文本


1.用于预训练BERT的数据集

为了预训练来自Transformers的双向编码器表示(BERT)_流萤数点的博客-CSDN博客中实现的BERT模型,我们需要以理想的格式生成数据集,以便于两个预训练任务:遮蔽语言模型和下一句预测。一方面,最初的BERT模型是在两个庞大的图书语料库和英语维基百科的合集上预训练的,但它很难吸引这本书的大多数读者。另一方面,现成的预训练BERT模型可能不适合医学等特定领域的应用。因此,在定制的数据集上对BERT进行预训练变得越来越流行。为了方便BERT预训练的演示,我们使用了较小的语料库WikiText-2 (Merity et al., 2016)。

与预训练word2vec,代码_流萤数点的博客-CSDN博客_word2vec代码中用于预训练word2vec的PTB数据集相比,WikiText-2(1)保留了原来的标点符号,适合于下一句预测;(2)保留了原来的大小写和数字;(3)大了一倍以上。

pip install mxnet==1.7.0.post1
pip install d2l==0.17.0
import os
import random
from mxnet import gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()

在WikiText-2数据集中,每行代表一个段落,其中在任意标点符号及其前面的词元之间插入空格。保留至少有两句话的段落。为了简单起见,我们仅使用句号作为分隔符来拆分句子。我们将更复杂的句子拆分技术的讨论留在本节末尾的练习中。

#@save
d2l.DATA_HUB['wikitext-2'] = (
    'https://s3.amazonaws.com/research.metamind.io/wikitext/'
    'wikitext-2-v1.zip', '3c914d17d80b1459be871a5039ac23e752a53cbe')

#@save
def _read_wiki(data_dir):
    file_name = os.path.join(data_dir, 'wiki.train.tokens')
    with open(file_name, 'r') as f:
        lines = f.readlines()
    # 大写字母转换为小写字母
    paragraphs = [line.strip().lower().split(' . ')
                  for line in lines if len(line.split(' . ')) >= 2]
    random.shuffle(paragraphs)
    return paragraphs

1.1为预训练任务定义辅助函数

在下文中,我们首先为BERT的两个预训练任务实现辅助函数。这些辅助函数将在稍后将原始文本语料库转换为理想格式的数据集时调用,以预训练BERT。

1.1.1生成下一句预测任务的数据

根据来自Transformers的双向编码器表示(BERT)_流萤数点的博客-CSDN博客的描述,_get_next_sentence函数生成二分类任务的训练样本。

#@save
def _get_next_sentence(sentence, next_sentence, paragraphs):
    if random.random() < 0.5:
        is_next = True
    else:
        # paragraphs是三重列表的嵌套
        next_sentence = random.choice(random.choice(paragraphs))
        is_next = False
    return sentence, next_sentence, is_next

下面的函数通过调用_get_next_sentence函数从输入paragraph生成用于下一句预测的训练样本。这里paragraph是句子列表,其中每个句子都是词元列表。自变量max_len指定预训练期间的BERT输入序列的最大长度。

#@save
def _get_nsp_data_from_paragraph(paragraph, paragraphs, vocab, max_len):
    nsp_data_from_paragraph = []
    for i in range(len(paragraph) - 1):
        tokens_a, tokens_b, is_next = _get_next_sentence(
            paragraph[i], paragraph[i + 1], paragraphs)
        # 考虑1个'<cls>'词元和2个'<sep>'词元
        if len(tokens_a) + len(tokens_b) + 3 > max_len:
            continue
        tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
        nsp_data_from_paragraph.append((tokens, segments, is_next))
    return nsp_data_from_paragraph

1.1.2生成遮蔽语言模型任务的数据

为了从BERT输入序列生成遮蔽语言模型的训练样本,我们定义了以下_replace_mlm_tokens函数。在其输入中,tokens是表示BERT输入序列的词元的列表,candidate_pred_positions是不包括特殊词元的BERT输入序列的词元索引的列表(特殊词元在遮蔽语言模型任务中不被预测),以及num_mlm_preds指示预测的数量(选择15%要预测的随机词元)。在来自Transformers的双向编码器表示(BERT)_流萤数点的博客-CSDN博客中定义遮蔽语言模型任务之后,在每个预测位置,输入可以由特殊的“掩码”词元或随机词元替换,或者保持不变。最后,该函数返回可能替换后的输入词元、发生预测的词元索引和这些预测的标签。

#@save
def _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds,
                        vocab):
    # 为遮蔽语言模型的输入创建新的词元副本,其中输入可能包含替换的“<mask>”或随机词元
    mlm_input_tokens = [token for token in tokens]
    pred_positions_and_labels = []
    # 打乱后用于在遮蔽语言模型任务中获取15%的随机词元进行预测
    random.shuffle(candidate_pred_positions)
    for mlm_pred_position in candidate_pred_positions:
        if len(pred_positions_and_labels) >= num_mlm_preds:
            break
        masked_token = None
        # 80%的时间:将词替换为“<mask>”词元
        if random.random() < 0.8:
            masked_token = '<mask>'
        else:
            # 10%的时间:保持词不变
            if random.random() < 0.5:
                masked_token = tokens[mlm_pred_position]
            # 10%的时间:用随机词替换该词
            else:
                masked_token = random.choice(vocab.idx_to_token)
        mlm_input_tokens[mlm_pred_position] = masked_token
        pred_positions_and_labels.append(
            (mlm_pred_position, tokens[mlm_pred_position]))
    return mlm_input_tokens, pred_positions_and_labels

通过调用前述的_replace_mlm_tokens函数,以下函数将BERT输入序列(tokens)作为输入,并返回输入词元的索引(在来自Transformers的双向编码器表示(BERT)_流萤数点的博客-CSDN博客 5.1中描述的可能的词元替换之后)、发生预测的词元索引以及这些预测的标签索引。

#@save
def _get_mlm_data_from_tokens(tokens, vocab):
    candidate_pred_positions = []
    # tokens是一个字符串列表
    for i, token in enumerate(tokens):
        # 在遮蔽语言模型任务中不会预测特殊词元
        if token in ['<cls>', '<sep>']:
            continue
        candidate_pred_positions.append(i)
    # 遮蔽语言模型任务中预测15%的随机词元
    num_mlm_preds = max(1, round(len(tokens) * 0.15))
    mlm_input_tokens, pred_positions_and_labels = _replace_mlm_tokens(
        tokens, candidate_pred_positions, num_mlm_preds, vocab)
    pred_positions_and_labels = sorted(pred_positions_and_labels,
                                       key=lambda x: x[0])
    pred_positions = [v[0] for v in pred_positions_and_labels]
    mlm_pred_labels = [v[1] for v in pred_positions_and_labels]
    return vocab[mlm_input_tokens], pred_positions, vocab[mlm_pred_labels]

1.2将文本转换为预训练数据集

现在我们几乎准备好为BERT预训练定制一个Dataset类。在此之前,我们仍然需要定义辅助函数_pad_bert_inputs来将特殊的“<mask>”词元附加到输入。它的参数examples包含来自两个预训练任务的辅助函数_get_nsp_data_from_paragraph_get_mlm_data_from_tokens的输出。

#@save
def _pad_bert_inputs(examples, max_len, vocab):
    max_num_mlm_preds = round(max_len * 0.15)
    all_token_ids, all_segments, valid_lens,  = [], [], []
    all_pred_positions, all_mlm_weights, all_mlm_labels = [], [], []
    nsp_labels = []
    for (token_ids, pred_positions, mlm_pred_label_ids, segments,
         is_next) in examples:
        all_token_ids.append(np.array(token_ids + [vocab['<pad>']] * (
            max_len - len(token_ids)), dtype='int32'))
        all_segments.append(np.array(segments + [0] * (
            max_len - len(segments)), dtype='int32'))
        # valid_lens不包括'<pad>'的计数
        valid_lens.append(np.array(len(token_ids), dtype='float32'))
        all_pred_positions.append(np.array(pred_positions + [0] * (
            max_num_mlm_preds - len(pred_positions)), dtype='int32'))
        # 填充词元的预测将通过乘以0权重在损失中过滤掉
        all_mlm_weights.append(
            np.array([1.0] * len(mlm_pred_label_ids) + [0.0] * (
                max_num_mlm_preds - len(pred_positions)), dtype='float32'))
        all_mlm_labels.append(np.array(mlm_pred_label_ids + [0] * (
            max_num_mlm_preds - len(mlm_pred_label_ids)), dtype='int32'))
        nsp_labels.append(np.array(is_next))
    return (all_token_ids, all_segments, valid_lens, all_pred_positions,
            all_mlm_weights, all_mlm_labels, nsp_labels)

将用于生成两个预训练任务的训练样本的辅助函数和用于填充输入的辅助函数放在一起,我们定义以下_WikiTextDataset类为用于预训练BERT的WikiText-2数据集。通过实现__getitem__函数,我们可以任意访问WikiText-2语料库的一对句子生成的预训练样本(遮蔽语言模型和下一句预测)样本。

最初的BERT模型使用词表大小为30000的WordPiece嵌入 (Wu et al., 2016)。WordPiece的词元化方法是对 子词嵌入,词的相似性和类比任务_流萤数点的博客-CSDN博客中原有的字节对编码算法稍作修改。为简单起见,我们使用d2l.tokenize函数进行词元化。出现次数少于5次的不频繁词元将被过滤掉。

#@save
class _WikiTextDataset(gluon.data.Dataset):
    def __init__(self, paragraphs, max_len):
        # 输入paragraphs[i]是代表段落的句子字符串列表;
        # 而输出paragraphs[i]是代表段落的句子列表,其中每个句子都是词元列表
        paragraphs = [d2l.tokenize(
            paragraph, token='word') for paragraph in paragraphs]
        sentences = [sentence for paragraph in paragraphs
                     for sentence in paragraph]
        self.vocab = d2l.Vocab(sentences, min_freq=5, reserved_tokens=[
            '<pad>', '<mask>', '<cls>', '<sep>'])
        # 获取下一句子预测任务的数据
        examples = []
        for paragraph in paragraphs:
            examples.extend(_get_nsp_data_from_paragraph(
                paragraph, paragraphs, self.vocab, max_len))
        # 获取遮蔽语言模型任务的数据
        examples = [(_get_mlm_data_from_tokens(tokens, self.vocab)
                      + (segments, is_next))
                     for tokens, segments, is_next in examples]
        # 填充输入
        (self.all_token_ids, self.all_segments, self.valid_lens,
         self.all_pred_positions, self.all_mlm_weights,
         self.all_mlm_labels, self.nsp_labels) = _pad_bert_inputs(
            examples, max_len, self.vocab)

    def __getitem__(self, idx):
        return (self.all_token_ids[idx], self.all_segments[idx],
                self.valid_lens[idx], self.all_pred_positions[idx],
                self.all_mlm_weights[idx], self.all_mlm_labels[idx],
                self.nsp_labels[idx])

    def __len__(self):
        return len(self.all_token_ids)

通过使用_read_wiki函数和_WikiTextDataset类,我们定义了下面的load_data_wiki来下载并生成WikiText-2数据集,并从中生成预训练样本。

#@save
def load_data_wiki(batch_size, max_len):
    """加载WikiText-2数据集"""
    num_workers = d2l.get_dataloader_workers()
    data_dir = d2l.download_extract('wikitext-2', 'wikitext-2')
    paragraphs = _read_wiki(data_dir)
    train_set = _WikiTextDataset(paragraphs, max_len)
    train_iter = gluon.data.DataLoader(train_set, batch_size, shuffle=True,
                                       num_workers=num_workers)
    return train_iter, train_set.vocab

将批量大小设置为512,将BERT输入序列的最大长度设置为64,我们打印出小批量的BERT预训练样本的形状。注意,在每个BERT输入序列中,为遮蔽语言模型任务预测10(64×0.15)个位置。

batch_size, max_len = 512, 64
train_iter, vocab = load_data_wiki(batch_size, max_len)

for (tokens_X, segments_X, valid_lens_x, pred_positions_X, mlm_weights_X,
     mlm_Y, nsp_y) in train_iter:
    print(tokens_X.shape, segments_X.shape, valid_lens_x.shape,
          pred_positions_X.shape, mlm_weights_X.shape, mlm_Y.shape,
          nsp_y.shape)
    break
Downloading ../data/wikitext-2-v1.zip from https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip...
(512, 64) (512, 64) (512,) (512, 10) (512, 10) (512, 10) (512,)

 

最后,我们来看一下词量。即使在过滤掉不频繁的词元之后,它仍然比PTB数据集的大两倍以上。

len(vocab)
20256

 

2.预训练BERT

利用来自Transformers的双向编码器表示(BERT)_流萤数点的博客-CSDN博客中实现的BERT模型和第一节中从WikiText-2数据集生成的预训练样本,我们将在本节中在WikiText-2数据集上对BERT进行预训练。

from mxnet import autograd, gluon, init, np, npx
from d2l import mxnet as d2l

npx.set_np()

首先,我们加载WikiText-2数据集作为小批量的预训练样本,用于遮蔽语言模型和下一句预测。批量大小是512,BERT输入序列的最大长度是64。注意,在原始BERT模型中,最大长度是512。

batch_size, max_len = 512, 64
train_iter, vocab = d2l.load_data_wiki(batch_size, max_len)

2.1预训练BERT

原始BERT (Devlin et al., 2018)有两个不同模型尺寸的版本。基本模型(BERTBASE)使用12层(Transformer编码器块),768个隐藏单元(隐藏大小)和12个自注意头。大模型(BERTLARGE)使用24层,1024个隐藏单元和16个自注意头。值得注意的是,前者有1.1亿个参数,后者有3.4亿个参数。为了便于演示,我们定义了一个小的BERT,使用了2层、128个隐藏单元和2个自注意头。

net = d2l.BERTModel(len(vocab), num_hiddens=128, ffn_num_hiddens=256,
                    num_heads=2, num_layers=2, dropout=0.2)
devices = d2l.try_all_gpus()
net.initialize(init.Xavier(), ctx=devices)
loss = gluon.loss.SoftmaxCELoss()

在定义训练代码实现之前,我们定义了一个辅助函数_get_batch_loss_bert。给定训练样本,该函数计算遮蔽语言模型和下一句子预测任务的损失。请注意,BERT预训练的最终损失是遮蔽语言模型损失和下一句预测损失的和。

#@save
def _get_batch_loss_bert(net, loss, vocab_size, tokens_X_shards,
                         segments_X_shards, valid_lens_x_shards,
                         pred_positions_X_shards, mlm_weights_X_shards,
                         mlm_Y_shards, nsp_y_shards):
    mlm_ls, nsp_ls, ls = [], [], []
    for (tokens_X_shard, segments_X_shard, valid_lens_x_shard,
         pred_positions_X_shard, mlm_weights_X_shard, mlm_Y_shard,
         nsp_y_shard) in zip(
        tokens_X_shards, segments_X_shards, valid_lens_x_shards,
        pred_positions_X_shards, mlm_weights_X_shards, mlm_Y_shards,
        nsp_y_shards):
        # 前向传播
        _, mlm_Y_hat, nsp_Y_hat = net(
            tokens_X_shard, segments_X_shard, valid_lens_x_shard.reshape(-1),
            pred_positions_X_shard)
        # 计算遮蔽语言模型损失
        mlm_l = loss(
            mlm_Y_hat.reshape((-1, vocab_size)), mlm_Y_shard.reshape(-1),
            mlm_weights_X_shard.reshape((-1, 1)))
        mlm_l = mlm_l.sum() / (mlm_weights_X_shard.sum() + 1e-8)
        # 计算下一句子预测任务的损失
        nsp_l = loss(nsp_Y_hat, nsp_y_shard)
        nsp_l = nsp_l.mean()
        mlm_ls.append(mlm_l)
        nsp_ls.append(nsp_l)
        ls.append(mlm_l + nsp_l)
        npx.waitall()
    return mlm_ls, nsp_ls, ls

通过调用上述两个辅助函数,下面的train_bert函数定义了在WikiText-2(train_iter)数据集上预训练BERT(net)的过程。训练BERT可能需要很长时间。以下函数的输入num_steps指定了训练的迭代步数,而不是像train_ch13函数那样指定训练的轮数。

def train_bert(train_iter, net, loss, vocab_size, devices, num_steps):
    trainer = gluon.Trainer(net.collect_params(), 'adam',
                            {'learning_rate': 0.01})
    step, timer = 0, d2l.Timer()
    animator = d2l.Animator(xlabel='step', ylabel='loss',
                            xlim=[1, num_steps], legend=['mlm', 'nsp'])
    # 遮蔽语言模型损失的和,下一句预测任务损失的和,句子对的数量,计数
    metric = d2l.Accumulator(4)
    num_steps_reached = False
    while step < num_steps and not num_steps_reached:
        for batch in train_iter:
            (tokens_X_shards, segments_X_shards, valid_lens_x_shards,
             pred_positions_X_shards, mlm_weights_X_shards,
             mlm_Y_shards, nsp_y_shards) = [gluon.utils.split_and_load(
                elem, devices, even_split=False) for elem in batch]
            timer.start()
            with autograd.record():
                mlm_ls, nsp_ls, ls = _get_batch_loss_bert(
                    net, loss, vocab_size, tokens_X_shards, segments_X_shards,
                    valid_lens_x_shards, pred_positions_X_shards,
                    mlm_weights_X_shards, mlm_Y_shards, nsp_y_shards)
            for l in ls:
                l.backward()
            trainer.step(1)
            mlm_l_mean = sum([float(l) for l in mlm_ls]) / len(mlm_ls)
            nsp_l_mean = sum([float(l) for l in nsp_ls]) / len(nsp_ls)
            metric.add(mlm_l_mean, nsp_l_mean, batch[0].shape[0], 1)
            timer.stop()
            animator.add(step + 1,
                         (metric[0] / metric[3], metric[1] / metric[3]))
            step += 1
            if step == num_steps:
                num_steps_reached = True
                break

    print(f'MLM loss {metric[0] / metric[3]:.3f}, '
          f'NSP loss {metric[1] / metric[3]:.3f}')
    print(f'{metric[2] / timer.sum():.1f} sentence pairs/sec on '
          f'{str(devices)}')

在预训练过程中,我们可以绘制出遮蔽语言模型损失和下一句预测损失。

train_bert(train_iter, net, loss, len(vocab), devices, 50)

 

 

2.2用BERT表示文本

在预训练BERT之后,我们可以用它来表示单个文本、文本对或其中的任何词元。下面的函数返回tokens_atokens_b中所有词元的BERT(net)表示。

def get_bert_encoding(net, tokens_a, tokens_b=None):
    tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
    token_ids = np.expand_dims(np.array(vocab[tokens], ctx=devices[0]),
                               axis=0)
    segments = np.expand_dims(np.array(segments, ctx=devices[0]), axis=0)
    valid_len = np.expand_dims(np.array(len(tokens), ctx=devices[0]), axis=0)
    encoded_X, _, _ = net(token_ids, segments, valid_len)
    return encoded_X

考虑“a crane is flying”这句话。回想一下来自Transformers的双向编码器表示(BERT)_流萤数点的博客-CSDN博客中讨论的BERT的输入表示。插入特殊标记“<cls>”(用于分类)和“<sep>”(用于分隔)后,BERT输入序列的长度为6。因为零是“<cls>”词元,encoded_text[:, 0, :]是整个输入语句的BERT表示。为了评估一词多义词元“crane”,我们还打印出了该词元的BERT表示的前三个元素。

tokens_a = ['a', 'crane', 'is', 'flying']
encoded_text = get_bert_encoding(net, tokens_a)
# 词元:'<cls>','a','crane','is','flying','<sep>'
encoded_text_cls = encoded_text[:, 0, :]
encoded_text_crane = encoded_text[:, 2, :]
encoded_text.shape, encoded_text_cls.shape, encoded_text_crane[0][:3]
((1, 6, 128), (1, 128), array([-0.10092681,  0.61367166, -2.2546144 ]))

 

现在考虑一个句子“a crane driver came”和“he just left”。类似地,encoded_pair[:, 0, :]是来自预训练BERT的整个句子对的编码结果。注意,多义词元“crane”的前三个元素与上下文不同时的元素不同。这支持了BERT表示是上下文敏感的。

tokens_a, tokens_b = ['a', 'crane', 'driver', 'came'], ['he', 'just', 'left']
encoded_pair = get_bert_encoding(net, tokens_a, tokens_b)
# 词元:'<cls>','a','crane','driver','came','<sep>','he','just',
# 'left','<sep>'
encoded_pair_cls = encoded_pair[:, 0, :]
encoded_pair_crane = encoded_pair[:, 2, :]
encoded_pair.shape, encoded_pair_cls.shape, encoded_pair_crane[0][:3]
((1, 10, 128), (1, 128), array([-0.10034682,  0.6146434 , -2.25434   ]))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/374755.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《Python机器学习》基础代码

1&#xff0c;要学习Python机器学习,第一步就是读入数据,这里我们以读入excel的数据为例,利用jupyter notebook来编码,具体教程看这个视频 推荐先上传到jupyter notebook,再用名字.xlsx来导入 Jupyter notebook导入Excel数据的两种方法介绍_哔哩哔哩_bilibili 2&#xff0c;…

MyBatis - 06 - MyBatis获取参数值的两种方式(重要)

文章目录1、回顾JDBC原生的获取参数值的方式2、MyBatis获取参数值的两种方式3、MyBatis获取参数值的五种情况情况1: Mapper接口方法的参数为单个字面量类型的参数ParameterMapper接口代码测试类代码ParameterMapper.xml配置方式1&#xff1a;${}ParameterMapper.xml配置方式2:#…

[8]云计算概念、技术与架构Thomas Erl-第九章 云管理机制|week9|10月29日

9.0引言 基于云的IT资源需要被建立、配置、维护和监控。 远程管理系统 资源管理系统 SLA管理系统 计费管理系统 这些系统通常会提供整合的API&#xff0c;并能够以个别产品、定制应用或者各种组合产品套装和多功能应用的形式提供给用户。 9.1 远程管理系统 远程管理系统…

「回顾RKDC2023」飞凌嵌入式受邀亮相第七届瑞芯微开发者大会

2023年2月23-24日&#xff0c;第七届瑞芯微开发者大会&#xff08;RKDC2023&#xff09;在福州隆重举行&#xff0c;飞凌嵌入式作为瑞芯微生态合作伙伴受邀参会&#xff0c;并与数千名开发者科技公司代表及行业领袖共同聚焦行业新兴产品需求&#xff0c;探讨新硬件发展趋势&…

webpack实战,手写loader和plugin

序言 对于 webpack 来说&#xff0c; loader 和 plugin 可以算是需求程度最为广泛的配置项了。但是呢&#xff0c;单单止步于配置可能还不够。如果我们自己有时候想要 diy 一个需求&#xff0c;但是 webpack 又没有相关的 loader 和 plugin 。那这个时候我们可能就得开始造点轮…

【JAVA程序设计】(C00105)基于SSM大学在校生职业走向调查分析系统-有文档

基于SSM大学在校生职业走向调查分析系统-有文档项目简介项目获取开发环境项目技术运行截图项目简介 基于ssm框架大学生在校生职业走向调查分析系统分为二个角色&#xff1a;系统管理员、用户 管理员角色包含以下功能&#xff1a; 调查课题管理、留言信息管理、在校学生管理、社…

华为OD机试题,用 Java 解【最小步骤数】问题

最近更新的博客 华为OD机试题,用 Java 解【停车场车辆统计】问题华为OD机试题,用 Java 解【字符串变换最小字符串】问题华为OD机试题,用 Java 解【计算最大乘积】问题华为OD机试题,用 Java 解【DNA 序列】问题华为OD机试 - 组成最大数(Java) | 机试题算法思路 【2023】使…

JavaSE-3 Java运行原理

一、Java的运行过程 &#x1f34e;Java程序运行时,必须经过编译和运行两个步骤。 首先将后缀名为.java的源文件进行编译,最终生成后缀名为.class的字节码文件。然后Java虚拟机将字节码文件进行解释执行,并将结果显示出来。具体过程如下图所示。 &#x1f349;Java程序的运行过…

Java集合学习:LinkedList源码详解

前言 LinkedList在我们平时工作中使用频率非车高&#xff0c;底层是基于双向链表数据结构实现&#xff0c;下面从经常使用的几个方法来了解其原理。 正文 结构 我们先看下LinkedList的重要属性 /**存储链表数量*/transient int size 0;/**存储链表的头节点*/transient Node…

MTK平台使用Omnipeek分析空口协议讲解

讲解这个之前,我们先来了解下beacon/robe Request/Probe Response 三种帧 beacon帧 信标帧,由AP以一定的时间间隔周期性发出,以此来告诉外界自己无线网络的存在。 Beacon帧作为802.11中一个周期性的帧,Beacon周期调高,对应睡眠周期拉长,故节能(即越来休息100ms再起来…

Laravel框架04:视图与CSRF攻击

Laravel框架04&#xff1a;视图与CSRF攻击一、视图概述二、变量分配与展示三、模板中直接使用函数四、循环与分支语法标签五、模板继承、包含1. 继承2. 包含六、外部静态文件引入七、CSRF攻击概述八、从CSRF验证中排除例外路由一、视图概述 视图存放在 resources/views 目录下…

Verilog 学习第五节(串口接收部分)

小梅哥串口部分学习part2 串口通信接收原理串口通信接收程序设计与调试巧用位操作优化串口接收逻辑设计串口接收模块的项目应用案例串口通信接收原理 在采样的时候没有必要一直判断一个clk内全部都是高/低电平&#xff0c;如果采用直接对中间点进行判断的话&#xff0c;很有可能…

CISP注册信息安全专业人员证书

一、什么是“CISP”&#xff1f; 注册信息安全专业人员(Certified Information Security Professional&#xff0c;简称“CISP”)&#xff0c;是安全行业最为权威的安全资格认证&#xff0c;由中国信息安全测评中心统一授权组织&#xff0c;中国信息安全测评中心授权培训机构进…

学习笔记之Vue中的Ajax(四)

Vue中的Ajax&#xff08;四&#xff09;Vue中的ajax一、解决开发环境Ajax跨越问题二、github 用户搜索案例2.1 准备工作2.2 静态页面2.3 实现动态组件2.4 注意细节三、vue 项目中常用的 2 个 Ajax 库3.1 axios3.2 vue-resource四、slot插槽&#xff08;四&#xff09;Vue中的aj…

计算结构体大小

计算结构体大小 目录计算结构体大小一. 结构体内存对齐1. 简介2. 嵌套结构体二. offsetof三. 内存对齐的意义四. 修改默认对齐数一. 结构体内存对齐 以字节&#xff08;bety&#xff09;为单位 1. 简介 对于结构体成员在内存里的存储&#xff0c;存在结构体的对齐规则&#…

代码随想录算法训练营day44 | 动态规划之完全背包 518. 零钱兑换 II 377. 组合总和 Ⅳ

day44完全背包基础知识问题描述举个栗子518. 零钱兑换 II1.确定dp数组以及下标的含义2.确定递推公式3.dp数组如何初始化4.确定遍历顺序5.举例推导dp数组377. 组合总和 Ⅳ1.确定dp数组以及下标的含义2.确定递推公式3.dp数组如何初始化4.确定遍历顺序5.举例来推导dp数组完全背包基…

安全合规之CVE-2016-2183

文章目录概述分析解决补充信息概述 安全部门脆弱性扫描到如下的风险漏洞要求系统上线必须要修复完毕。 不过我仔细的看了安全部门返回的报告&#xff0c;它是针对Windows Server 2019远程桌面端口进行风险报告…这是刷存在感了吗&#xff1f;哎&#xff0c;没有办法先做调查确…

高压放大器在声波谐振电小天线收发测试系统中的应用

实验名称&#xff1a;高压放大器在声波谐振电小天线收发测试系统中的应用研究方向&#xff1a;信号传输测试目的&#xff1a;声波谐振电小天线颠覆了传统电小天线以电磁波谐振作为理论基础的天线发射和接收模式&#xff0c;它借助声波谐振实现电磁信号的辐射或接收。因为同频的…

Spring Batch 综合案例实战-项目准备

目录 案例需求 分析 项目准备 步骤1&#xff1a;新开spring-batch-example 步骤2&#xff1a;导入依赖 步骤3&#xff1a;配置文件 步骤4&#xff1a;建立employee表与employe_temp表 步骤5&#xff1a;建立基本代码体系-domain-mapper-service-controller-mapper.xml …

YMatrix + PLPython替代Spark实现车联网算法

PySpark算法开发实战 一、PySpark介绍 Spark是一种快速、通用、可扩展的大数据分析引擎&#xff0c;PySpark是Spark为Python开发者提供的API。在有非常多可视化和机器学习算法需求的应用场景&#xff0c;使用PySpark比Spark-Scala可以更好地和python中丰富的库配合使用。 使…